GEOMETRY II: HOMEWORK 03

DUE MARCH 27

- (1) Choose a coordinate cover for a manifold M^n . A 2-tensor¹ consists of the following data:
 - a vector valued function $S_{ij}(x)$ for $i, j \in \{1, \ldots, n\}$ on each coordinate chart;
 - on the overlapping region, $S_{ij}(x) = \tilde{S}_{k\ell}(y(x)) \frac{\partial y^k}{\partial x^i} \frac{\partial y^\ell}{\partial x^j}$.

It is often written as $S_{ij} dx^i \otimes dx^j = \tilde{S}_{k\ell} dy^k \otimes dy^{\ell}$. The Riemannian metric and the second fundamental form are both 2-tensor.

With a metric on M, it induces a metric for 2-tensors by

$$\langle S_{ij} \, \mathrm{d} x^i \otimes \mathrm{d} x^j, T_{k\ell} \, \mathrm{d} x^k \otimes \mathrm{d} x^\ell \rangle = g^{ik} \, g^{j\ell} \, S_{ij} \, T_{k\ell} \; .$$

Show that ∇ defined in the first week is compatible with the metric. That is to say,

$$\frac{\partial}{\partial x^i} \langle S, T \rangle = \langle \nabla_{\partial_i} S, T \rangle + \langle S, \nabla_{\partial_i} T \rangle \; .$$

<u>Remark</u>. $\nabla S = dx^i \otimes \nabla_{\partial_i} S$ is a 3-tensor, and one can define the norm/inner product analogously.

- (2) Let $(\overline{M}, \overline{g})$ be a Riemannian manifold, and $M \subset \overline{M}$ be a submanifold. It is also a Riemannian manifold with $g = \overline{g}|_M$. Let f be a smooth function on \overline{M} . Check that $\nabla^M f$ is the orthogonal projection of $\nabla^{\overline{M}} f$ onto TM.
- (3) Let (Σ, g) be a Riemannian manifold. For $f \in C^{\infty}(\Sigma)$, $df = \frac{\partial f}{\partial x^i} dx^i$, $\nabla f = g^{ij} \frac{\partial f}{\partial x^i} \frac{\partial}{\partial x^j}$, and $|\nabla f|^2 = |df|^2 = g^{ij} \frac{\partial f}{\partial x^i} \frac{\partial f}{\partial x^j}$. Show that

$$\frac{1}{2}\Delta f^2 = f\Delta f + |\nabla f|^2 \; .$$

- (4) Let S^3 be the unit sphere in \mathbb{R}^4 , with the induced metric.
 - (a) Check that the Clifford torus, $\{\frac{1}{\sqrt{2}}(\cos \alpha, \sin \alpha, \cos \beta, \sin \beta)\}$, is a minimal surface in S^3 . Note that the Gauss curvature of the Clifford torus is zero.
 - (b) Suppose that Σ is a minimal surface in S^3 . Prove that $\Delta w^i = -2w^i$ for the coordinate functions $\{w^i\}_{i=1}^4$ of \mathbb{R}^4 .

Minimal surface in S^3 is defined similarly, and is also the critical state of the volume functional. Suppose that $X(x^1, x^2)$ is a local parametrization for the surface Σ , which is an \mathbb{R}^4 -valued function. The orthogonal complement of $T_p\Sigma$ in T_pS^3 is one dimensional. Choose a unit normal ν of Σ in S^3 . The second fundamental form (of

¹It is usually called tensor type of (0, 2) in most textbooks.

 Σ in S^3) is given by

$$h_{ij} = \left\langle \frac{\partial^2 X}{\partial x^i \partial x^j}, \nu \right\rangle$$

The mean curvature is still defined to be $H = g^{ij}h_{ij}$. Here is a hint:

$$\frac{\partial^2 X}{\partial x^i \partial x^j} = \Gamma^k_{ij} \frac{\partial X}{\partial x^k} + h_{ij} \nu - g_{ij} X.$$

I leave it to you to think about this equation.