GEOMETRY II: HOMEWORK 03

DUE MARCH 27

(1) Choose a coordinate cover for a manifold M^{n}. A 2-tensor ${ }^{1}$ consists of the following data:

- a vector valued function $S_{i j}(x)$ for $i, j \in\{1, \ldots, n\}$ on each coordinate chart;
- on the overlapping region, $S_{i j}(x)=\tilde{S}_{k \ell}(y(x)) \frac{\partial y^{k}}{\partial x^{i}} \frac{\partial y^{\ell}}{\partial x^{i}}$.

It is often written as $S_{i j} \mathrm{~d} x^{i} \otimes \mathrm{~d} x^{j}=\tilde{S}_{k \ell} \mathrm{~d} y^{k} \otimes \mathrm{~d} y^{\ell}$. The Riemannian metric and the second fundamental form are both 2-tensor.

With a metric on M, it induces a metric for 2-tensors by

$$
\left\langle S_{i j} \mathrm{~d} x^{i} \otimes \mathrm{~d} x^{j}, T_{k \ell} \mathrm{~d} x^{k} \otimes \mathrm{~d} x^{\ell}\right\rangle=g^{i k} g^{j \ell} S_{i j} T_{k \ell} .
$$

Show that ∇ defined in the first week is compatible with the metric. That is to say,

$$
\frac{\partial}{\partial x^{i}}\langle S, T\rangle=\left\langle\nabla_{\partial_{i}} S, T\right\rangle+\left\langle S, \nabla_{\partial_{i}} T\right\rangle .
$$

Remark. $\nabla S=\mathrm{d} x^{i} \otimes \nabla_{\partial_{i}} S$ is a 3-tensor, and one can define the norm/inner product analogously.
(2) Let (\bar{M}, \bar{g}) be a Riemannian manifold, and $M \subset \bar{M}$ be a submanifold. It is also a Riemannian manifold with $g=\left.\bar{g}\right|_{M}$. Let f be a smooth function on \bar{M}. Check that $\nabla^{M} f$ is the orthogonal projection of $\nabla^{\bar{M}} f$ onto $T M$.
(3) Let (Σ, g) be a Riemannian manifold. For $f \in C^{\infty}(\Sigma), \mathrm{d} f=\frac{\partial f}{\partial x^{i}} \mathrm{~d} x^{i}, \nabla f=g^{i j} \frac{\partial f}{\partial x^{i}} \frac{\partial}{\partial x^{i}}$, and $|\nabla f|^{2}=|\mathrm{d} f|^{2}=g^{i j} \frac{\partial f}{\partial x^{2}} \frac{\partial f}{\partial x^{j}}$. Show that

$$
\frac{1}{2} \Delta f^{2}=f \Delta f+|\nabla f|^{2} .
$$

(4) Let S^{3} be the unit sphere in \mathbb{R}^{4}, with the induced metric.
(a) Check that the Clifford torus, $\left\{\frac{1}{\sqrt{2}}(\cos \alpha, \sin \alpha, \cos \beta, \sin \beta)\right\}$, is a minimal surface in S^{3}. Note that the Gauss curvature of the Clifford torus is zero.
(b) Suppose that Σ is a minimal surface in S^{3}. Prove that $\Delta w^{i}=-2 w^{i}$ for the coordinate functions $\left\{w^{i}\right\}_{i=1}^{4}$ of \mathbb{R}^{4}.
Minimal surface in S^{3} is defined similarly, and is also the critical state of the volume functional. Suppose that $X\left(x^{1}, x^{2}\right)$ is a local parametrization for the surface Σ, which is an \mathbb{R}^{4}-valued function. The orthogonal complement of $T_{p} \Sigma$ in $T_{p} S^{3}$ is one dimensional. Choose a unit normal ν of Σ in S^{3}. The second fundamental form (of

[^0]Σ in S^{3}) is given by
$$
h_{i j}=\left\langle\frac{\partial^{2} X}{\partial x^{i} \partial x^{j}}, \nu\right\rangle .
$$

The mean curvature is still defined to be $H=g^{i j} h_{i j}$. Here is a hint:

$$
\frac{\partial^{2} X}{\partial x^{i} \partial x^{j}}=\Gamma_{i j}^{k} \frac{\partial X}{\partial x^{k}}+h_{i j} \nu-g_{i j} X .
$$

I leave it to you to think about this equation.

[^0]: ${ }^{1}$ It is usually called tensor type of $(0,2)$ in most textbooks.

