GEOMETRY II: HOMEWORK 02

DUE MARCH 20

(1) (a) Suppose the Σ is a regular surface in \mathbb{R}^3 without umbilical points¹. Prove that Σ is a minimal surface if and only the Gauss map $N: \Sigma \to S^2$ satisfies

$$\langle \mathrm{d}N(u), \mathrm{d}N(v) \rangle = \lambda_p \langle u, v \rangle$$

for any $p \in \Sigma$ and $u, v \in T_p \Sigma$, where λ_p is a scalar only depends on p. Remember that $dN: T_p \Sigma \to T_{N(p)} S^2$.

(b) Note that S^2 admits an isothermal coordinate system. There are many ways to construct it, for instance, the stereographic projection, or the geodesic polar coordinate.

Suppose that Σ is a minimal surface, and $K_p \neq 0$ at some $p \in \Sigma$. Prove that one can use the "inverse" of the Gauss map to construct a (local) isothermal coordinate on a neighborhood of p.

(2) The Enneper surface is given by

$$\left(u(1-\frac{u^2}{3}+v^2),-v(1-\frac{v^2}{3}+u^2),u^2-v^2\right)$$

for $(u, v) \in \mathbb{R}^2$.

- (a) Check that it is minimal.
- (b) Calculate its total Gauss curvature, $\iint K d\sigma$.
- (3) For a function $f : \mathbb{R}^n \to \mathbb{R}$, the induced metric on Γ_f has coefficients

$$g_{ij} = \delta_{ij} + \frac{\partial f}{\partial x^i} \frac{\partial f}{\partial x^j} \; .$$

- (a) Calculate g^{ij} .
- (b) Show that Γ_f is minimal is also equivalent to

$$g^{ij}\frac{\partial^2 f}{\partial x^i \partial x^j} = 0$$

(4) For a hypersurface Σ in \mathbb{R}^{n+1} with parametrization $X(x^1, \cdots, x^n)$,

$$\frac{\partial^2 X}{\partial x^i \partial x^j} = \Gamma^p_{ij} \frac{\partial X}{\partial x^p} + h_{ij} \nu$$

where ν is the unit normal vector field. Derive the Gauss equation

$$R^{p}_{kij} = g^{pq} h_{iq} h_{jk} - g^{pg} h_{ik} h_{jq} \; .$$

¹A point $p \in \Sigma$ is called a umbilical point if the two principal curvatures coincide, i.e. A is proportional to g at p.