
GEOMETRY II: FINAL

MAY 15

(1) [12 points] Consider the geodesic normal coordinate at p:

(x1, . . . , xn) 7→ expp(
n∑
k=1

xkek) (♠)

where {ei} is an orthonormal basis for TpM . Calculate the series expansion of gij(x)

up to the quadratic term.

Here is the recipe:

(a) gij(x0) = 〈 ∂
∂xi
, ∂
∂xj
〉 at x0. Recall that ∂

∂xi
mean the tangent of the coordinate

curves under the parametrization (♠). That is to say, ∂
∂xi

at x0 actually is the

tangent vector

d

ds

∣∣∣∣
s=0

expp

(
(
n∑
k=1

xk0ek) + sei

)
.

(b) When x0 = 0, we have seen that (expp)∗|0 is the identity map, and thus ∂
∂xi
|0 =

ei. It follows that gij(0) = δij.

(c) Now, suppose that x0 6= 0. Let γ0(t) be the radial geodesic expp(t(
∑n

k=1 x
k
0ek)).

Parallel transport {ek} along γ0(t). This gives an orthonormal basis for TM |γ0(t).
Still denote them by {ek}.

(d) Try to interpret ∂
∂xi
|x0 as a Jacobi field. Let

γ(t, s) = expp

(
t

[
(
n∑
k=1

xk0ek) + sei

])
.

Then, V (t) = ∂γ
∂s
|s=0 is a Jacobi field. A direct calculation shows that V (0) = 0

and V (1) = ∂
∂xi
|x0 . Also, from parallelity, ∂γ0

∂t
=
∑n

k=1 x
kek.

(e) Write V (t) =
∑n

k=1 v
k(t)ek. Note that

f(1) = f(0) +

∫ 1

0

f ′(t) dt

= f(0) + f ′(0) +

∫ 1

0

(1− t) f ′′(t) dt

= f(0) + f ′(0) +
1

2
f ′′(0) +

1

2

∫ 1

0

(1− t)2 f ′′′
(t) dt

= f(0) + f ′(0) +
1

2
f ′′(0) +

1

6
f ′′′(0) +

1

6

∫ 1

0

(1− t)3 f (4)(t) dt .
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(f) Denote ∂γ0
∂t

=
∑n

k=1 x
kek by T . Recall the Jacobi field equation:

∇T∇TV = R(T, V )T .

It follows that

∇T∇T∇TV = (∇TR)((T, V )T ) +R(T,∇TV )T

where the geodesic equation ∇TT ≡ 0 has been used.

(2) [4+4+4+8 points] Along a geodesic γ(t), a point q = γ(t0) is said to be a conjugate

point of p = γ(0) along γ if there exists a non-trivial Jacobi fields, J(t), along γ|[0,t0]
such that J(0) = 0 = J(t0). A typical example is the north and south poles of a

round sphere.

Note that if q is not conjugate to p along γ|[0,t0], any Jacobi field J(t) on it is

uniquely determined by J(0) and J(t0). Thus, we may replace the initial velocity

(∇ ∂γ
∂t
V )|t=0 by the condition V (t0).

(a) Write γ(t) = expp(tv) for v ∈ TpM . Show that q is conjugate to p if and only if

q is a singular value of expp : TpM →M .

(b) Denote ∂γ
∂t

by T . For a Jacobi field J(t), show that

〈T, J〉 = 〈T, J〉|t=0 + 〈T,∇TJ〉|t=0 · t .

(c) For two Jacobi fields, J and J̃ , prove that

〈∇TJ, J̃〉 − 〈J,∇T J̃〉 is a constant .

For a smooth vector field W (t) along a geodesic γ(t) (t ∈ [0, 1]), define the index

form by

I(W,W ) =

∫ 1

0

(
|∇TW |2 + 〈R(W,T )W,T 〉

)
dt

= 〈∇TW,W 〉|1t=0 −
∫ 1

0

(〈∇T∇TW −R(T,W )T ,W 〉) dt

where T = ∂γ
∂t

. Up to some boundary terms, this is the second variation of the energy

along W .

(d) Suppose that there are no conjugate points to p = γ(0) along γ|[0,1]. Let W be a

smooth vector field on γ with W (0) = 0. From the above discussion, there is a

unique Jacobi field J(t) on γ|[0,1] such that J(0) = W (0) = 0 and J(1) = W (1).

Prove that

I(J, J) ≤ I(W,W )

and the equality holds only when W ≡ J .
2



Hint: Choose a basis {Ek} for TqM where q = γ(1). Extend them as a Jacobi

field over γ by requiring them to vanish at p = γ(0). Denote them by Ek(t).

By the no-conjugate points assumption, {Ek(t)} is a basis for Tγ(t)M except at

t = 0. One can argue that1

W =
n∑
k=1

fk(t)Ek(t)

for some smooth functions fk(t) over (0, 1), where fk(0) = 0 and limt→0+(fk)
′

exists.

Now,

J =
n∑
k=1

fk(1)Ek ,

and

I(J, J) = 〈∇TJ, J〉|1t=0 =
n∑

k,`=1

fk(1)f`(1)〈E ′k(1), E`(1)〉

where E ′k means ∇TEk. Note that ∇TW =
∑n

k=1(f
′
kEk + fkE

′
k). What can you

say about

I(W,W )− I(J, J)−
∫ 1

0

|
n∑
k=1

f ′kEk|2 dt ?

Remark:

• This can be used to show that after a conjugate point, the geodesic is no longer

length minimizing [CE, §1.8].

• Also, with some positivity condition on the curvature, the conjugate points must

occur after a certain length, and one can conclude a bound on the diamter of

(M, g) [CE, §1.9].

(3) [5+5 points] Given a vector field U , define its Lie derivative on a 1-form α by

(LUα)|p =
d

dt

∣∣∣∣
t=0

ϕ∗t (α) = lim
t→0

ϕ∗t (α|ϕt(p))− α|p
t

(♣)

where ϕt is the one-parameter family of diffeomorphisms generated by U . Note that

both terms in the enumerators are elements in T ∗pM , and the subtraction can be

performed. This is not a connection; it depends on the behavior of U on an open

neighborhood of p.

1by the fact that ∇TEk|t=0 6= 0 and considering 1
tEk(t)
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Choose a coordinate chart {xi} on a neighborhood of p. Write U = ui(x) ∂
∂xi

The

map ϕt locally is given by ϕi(x; t) where

d

dt
ϕi(x; t) = ui(ϕ(x; t)) and ϕi(x; 0) = xi .

For any 1-form α = αi(x) dxi,

ϕ∗tα = αi(ϕ(x; t))
∂ϕi(x; t)

∂xj
dxj .

It follows that

d

dt
ϕ∗tα =

(
∂αi(u)

∂uk
∂ϕk

∂t

)
∂ϕi(x; t)

∂xj
dxj + αi(ϕ(x; t))

∂2ϕi(x; t)

∂t∂xj
dxj

where uk stands for the formal variable ϕk(x; t). At t = 0, uk = xk. Therefore,

d

dt

∣∣∣∣
t=0

ϕ∗tα =
∂αi
∂xk

uk dxi + αi
∂ui

∂xj
dxj .

Now, suppose that there is another vector field V = vj ∂
∂xj

. Recall that

[U, V ] = ui
∂vj

∂xi
∂

∂xj
− vi∂u

j

∂xi
∂

∂xj
.

We compute

(LUα)(V ) + α(LUV ) =
∂αi
∂xk

ukvi + αi
∂ui

∂xj
vj + αju

i∂v
j

∂xi
− αjvi

∂uj

∂xi

= uk
∂(αiv

i)

∂uk
= U(α(V )) .

That is to say, it obeys a Leibniz rule. One can similarly use (♣) to define Lie deriv-

ative on sections of ⊗kT ∗M as well, and it also obey the Lebniz rule. In particular,

for S ∈ Γ(T ∗M ⊗ T ∗M),

(LUS)(V1, V2) = U(S(V1, V2))− S(LUV1, V2)− S(V1,LUV2) .

(a) A vector field U is called a Killing vector field if it is infinitesimally an isometry,

namely,

d

dt

∣∣∣∣
t=0

ϕ∗tg = 0 .

Show that U is a Killing vector field if and only if

〈∇V1U, V2〉+ 〈∇V2U, V1〉 = 0

for any two vector fields V1, V2.
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(b) Suppose that U is a Killing vector field, and γ is a geodesic. Prove that U |γ is

a Jacobi field.

Remark: This is intuitively true. U shall generates isometries, which sends

geodesics to geodesics. Therefore, it must be a variational field of geodesics of

γ.

(4) [5+5+4 points] For a vector field U , define its divergence to be the function

tr(V 7→ ∇VU) .

In terms of coordinate, it reads

div(U) =
∂U i

∂xi
+ ΓjjiU

i .

(a) Prove that if the one-parameter family of diffeomorphisms preserves the volume

form,

ϕ∗t (
√

det gijdx
1 ∧ · · · ∧ dxn) =

√
det gijdx

1 ∧ · · · ∧ dxn for any t ,

then div(U) ≡ 0.

(b) Show that

div(U)
√

det gijdx
1 ∧ · · · ∧ dxn = d

(
ι(U)

√
det gijdx

1 ∧ · · · ∧ dxn
)
.

(c) Check that a Killing vector field must be divergence free, div(U) ≡ 0.
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