GEOMETRY II: HOMEWORK 10

DUE JUNE 12

(1) Let
$$U = \{(x, y) \in \mathbb{R}^2 : \sqrt{x^2 + y^2} < e^{-1}\}$$
. Consider the function defined on U by
 $f(x, y) = \log |\log r|$ when $r = \sqrt{x^2 + y^2} \in (0, e^{-1})$,

and set f(0,0) = 0.

(a) Check that $f \in L^2_1(U)$. Namely,

$$\iint_U \left(|f|^2 + |f_x|^2 + |f_y|^2 \right) \mathrm{d}x \mathrm{d}y \quad \text{converges.}$$

(b) Check that $\exp(f) \in L^1$. Namely,

$$\iint_U |\exp(f)| \, \mathrm{d}x \mathrm{d}y \quad \text{converges.}$$

- (c) Check that f is not bounded on U, $f \notin L^{\infty}(U)$.
- (2) By using the complex coordinate for the stereographic projection, the standard metric on \mathbb{S}^2 is

$$g = \frac{4|\mathrm{d}z|^2}{(1+|z|^2)^2} \; ,$$

where $|dz|^2 = dx \otimes dx + dy \otimes dy$. Consider the Möbius transform

$$f(z) = \frac{az+b}{cz+d}$$
 where $ad - bc \neq 0$.

(Note that a, b, c, d take value in \mathbb{C} .) It is not hard to check that f defines a diffeomorphism of \mathbb{S}^2 .

- (a) Since f is a diffeomorphism, f^*g is also a Riemannian metric on \mathbb{S}^2 with Gaussian curvature 1. Check that f^*g and g are conformal to each other.
- (b) Show that one can always find $u \in \mathcal{C}^{\infty}(\mathbb{S}^2)$ such that $e^{2u}g$ has constant Gaussian curvature 1, with $\sup_{\mathbb{S}^2} |u|$ being arbitrarily large.
- (3) In terms of the spherical coordiante, the standard metric on \mathbb{S}^2 takes the form

$$g = \mathrm{d}\rho \otimes \mathrm{d}\rho + \sin^2 \rho \,\mathrm{d}\theta \otimes \mathrm{d}\theta$$

where $\rho \in [0, \pi]$ and $\theta \in [0, 2\pi]$. When $\rho = 0$ or π , it corresponds to the north or south pole.

- (a) Write down the Laplacian, Δ , in terms of this coordinate.
- (b) Consider the function $f(\rho) = \log(1 \cos \rho)$. Calculate Δf .

At first glance, this looks very weird. From the Green's formula/Stokes theorem, $\int \Delta f = 0$ for any $f \in C^{\infty}(\mathbb{S}^2)$. The function here is not smooth; it has singularity at $\rho = 0$. In the literature, it is often formulated as

$$\Delta f = c_1 \,\delta_N + c_2$$

where δ_N is the delta distribution at the north pole, and c_1, c_2 are constants¹. It means that

$$\int_{\mathbb{S}^2} f \, \Delta \varphi = c_1 \, \varphi(N) + c_2 \int_{\mathbb{S}^2} \varphi$$

for any smooth function φ on \mathbb{S}^2 . This function f is called the Green's function, and has the similar properties as what you learned in the PDE class.

¹The constants will make the right hand side has zero integration.