GEOMETRY II: HOMEWORK 9

DUE MAY 29

- (1) (a) Suppose that $S_{ij} dx^i \otimes dx^j$ is symmetric, $S_{ij} = S_{ji}$. Check that $S_{ij;k} = S_{ji;k}$. In other words, $\nabla_{\partial_k} S$ is still a symmetric (0, 2)-tensor.
 - (b) Suppose that $S_{ij} dx^i \otimes dx^j$ is skew-symmetric, $S_{ij} = -S_{ji}$. Check that $S_{ij;k} = -S_{ji;k}$.
- (2) Write $(\nabla_{\partial_k}\nabla_{\partial_\ell} \nabla_{\partial_\ell}\nabla_{\partial_k} \nabla_{[\partial_k,\partial_\ell]})dx^j = \sum_i R_i^{\ j}{}_{k\,\ell}dx^i$. Since the musical isomorphism (raising and lowering indices) is parallel, one can find that

$$R_{i\ k\ell}^{\ j} = g_{ip} g^{jq} R_{\ q\,k\ell}^p = g^{jq} R_{i\,q\,k\ell}$$
,

where $R_{qk\ell}^p$ is the coefficient of $R(\partial_k, \partial_\ell)\partial_q$ in ∂_p , and $R_{iqk\ell} = \langle R(\partial_k, \partial_\ell)\partial_q, \partial_i \rangle$. Since $R_{iqk\ell} = -R_{qik\ell}$,

$$R_{i\ k\ell}^{\ j} = -g^{jq} R_{q\,i\,k\,\ell} = -R_{\ i\,k\,\ell}^{j} \ .$$

Now, suppose that the Ricci curvature is pointwise proportional to the metric tensor. Namely, there exists a smooth function $f \in \mathcal{C}^{\infty}(M)$ such that

$$R^{\ell}_{i\ell j} = f g_{ij} . \tag{*}$$

Since the metric tensor is parallel, taking covariant derivative in ∂_k gives

$$R^{\ell}_{i\ell j;k} = (\partial_k f) g_{ij} .$$

By the second Bianchi identity,

$$R^{\ell}_{i\ell j;k} + R^{\ell}_{ijk;\ell} + R^{\ell}_{ik\ell;j} = 0$$
.

Now, multiply the equation by g^{ij} , and sum over i, j (also ℓ). Note that $\sum_{i,j} g^{ij} g_{ji} = \sum_i \delta_i^i = \dim M$.

- (a) Express $\sum_{i,j,\ell} g^{ij} R^{\ell}_{i\ell j;k}$ in terms of $\partial_k f$.
- (b) Express $\sum_{i,j,\ell} g^{ij} R^{\ell}_{ijk;\ell}$ in terms of $\partial_k f$. Hint: By (1) and the above discussion, $g^{ij} R^{\ell}_{ijk;\ell} = g^{\ell m} R^{\ j}_{m\ j\ k;\ell} = -g^{\ell m} R^{j}_{m\ j\ k;\ell}$.
- (c) Express $\sum_{i,j,\ell} g^{ij} R^{\ell}_{ik\ell;j}$ in terms of $\partial_k f$.
- (d) Combine the above computations to prove that when dim $M \geq 3$ and connected, (\star) implies that f must be a constant function.

(3) Now, consider the 2-dimensional case. Let $\{e_1, e_2\}$ be an (local) oriented, orthonormal frame for TM, and let $\{\omega^1, \omega^2\}$ be the dual coframe. The metric is $g = \omega^1 \otimes \omega^1 + \omega^2 \otimes \omega^2$. Denote by ω_1^2 the coefficient 1-form of the Levi-Civita connection,

$$\nabla e_1 = \omega_1^2 \otimes e_2 , \qquad \qquad d\omega^1 = \omega_1^2 \wedge \omega^2 ,$$

$$\nabla e_2 = -\omega_1^2 \otimes e_1 , \qquad \qquad d\omega^2 = -\omega_1^2 \wedge \omega^1 .$$

The curvature relation in this case is

$$\mathrm{d}\omega_1^2 = -K\,\omega^1 \wedge \omega^2$$
 where K is the Gaussian curvature .

For a smooth function f, the exterior derivative is $\mathrm{d}f = \sum_i e_i(f)\omega^i$. The gradient vector field is $\nabla f = \sum_i e_i(f)e_i$. The Laplacian of f, Δf , is defined to be the divergence of its gradient vector field, $\mathrm{tr}(X \to \nabla_X(\nabla f))$. In terms of this moving frame notation,

$$\Delta f = \sum_{i} \left(e_i(e_i(f)) + \sum_{j} e_i(f) \omega_i^j(e_j) \right) .$$

Now, take any smooth function u, and consider the *conformal change* of the metric,

$$\tilde{g} = e^{2u}g = (e^u\omega^1) \otimes (e^u\omega^1) + (e^u\omega^2) \otimes (e^u\omega^2) .$$

Calculate the Gaussian curvature of \tilde{g} .

Hint: The answer shall involve the original Gaussian curvature K, and the Laplacian of u. Note that $\{e^u\omega^1, e^u\omega^2\}$ is the orthonormal coframe for \tilde{g} .