GEOMETRY II: HOMEWORK 7

DUE APRIL 24

Given $U, V \in T_pM$ which are linearly independent, the *sectional curvature* is defined to be

$$K_p(U,V) = \frac{\langle R(U,V)V, U \rangle}{|U|^2 |V|^2 - (\langle U,V \rangle)^2}$$

The denominator is the square of the area of the parallelogram spanned by U, V.

For coordinate vector field,

$$K(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}) = \frac{R_{ijij}}{g_{ii}g_{jj} - g_{ij}^2}$$

When M is of two dimension, the sectional curvature depends only on the point p, and is indeed the Gaussian curvature.

(1) Let \mathbb{H} be the upper half plane $\{(x, y) \in \mathbb{R}^2 : y > 0\}$. Endow the Riemannian metric

$$g = \frac{1}{y^2} (\mathrm{d}x^2 + \mathrm{d}y^2) \; .$$

- (a) Calculate its Christoffel symbols.
- (b) Calculate its Gaussian (sectional) curvature.
- (c) Write (x, y) as z = x + iy. For any $(a, b, c, d) \in \mathbb{R}^4$ with ad bc = 1, show that

$$z \mapsto \frac{az+b}{cz+d}$$

defines an isometry of (\mathbb{H}, g) .

- (d) For p = (0, 1), find the geodesic with initial velocity v = (0, 1).
- (e) Use part (c) and (d) to conclude that (\mathbb{H}, g) is complete.
- (f) Show that the geodesic you find in part (d) minimizes the distance between (0, 1) and (0, s) for any s > 0.
 - Hint: $g \ge dy^2/y^2$.
- (g) Describe all the geodesics of (\mathbb{H}, g) geometrically (you do not need to give all the equations).
- (2) For any $\alpha > 0$, consider the Riemannian metric

$$g_{\alpha} = \frac{1}{y^{\alpha}} (\mathrm{d}x^2 + \mathrm{d}y^2)$$

on \mathbb{H} . If $\alpha \neq 2$, prove that (\mathbb{H}, g_{α}) is not complete.

Hint: Consider the geodesic from (0, 1) to the origin or to the infinity.

(3) Show that if $\gamma(t)$ satisfies the geodesic equation, then $|\gamma'(t)|^2$ must be constant.