GEOMETRY II: HOMEWORK 4

DUE MARCH 20

- (1) Suppose that a rank k vector bundle E carries a bundle metric and metric connection. Compute its curvature by using an orthonormal trivialization. Show that the curvature is a $k \times k$ skew-symmetric 2-forms.
- (2) On $\mathcal{U} \times \mathbb{R}^k$, consider $\nabla = d + A$ and $\tilde{\nabla} = d + \tilde{A}$, where $\tilde{A} = g^{-1}dg + g^{-1}Ag$ for a smooth map $g: \mathcal{U} \to \operatorname{GL}(k; \mathbb{R})$. Show that $\tilde{F} = g^{-1}Fg$.
- (3) Let Σ be an oriented regular surface in \mathbb{R}^3 . Denote by ∇ the connection on $T\Sigma$ defined by exterior derivative of the \mathbb{R}^3 -valued function followed by projection. Choose $p \in \Sigma$, and choose coordinate system such that
 - *p* corresponds to the origin;
 - $\frac{\partial X}{\partial u^1}$ and $\frac{\partial X}{\partial u^2}$ are orthonormal at (0,0);
 - $du^1 \wedge du^2$ is positively oriented.

Hence, the area form at p is $du^1 \wedge du^2$. Prove that

$$F(\,,\,)\frac{\partial X}{\partial u^1}\Big|_p = -K(p)\,\mathrm{d}u^1 \wedge \mathrm{d}u^2 \otimes \frac{\partial X}{\partial u^2}$$

where K(p) is the Gaussian curvature of Σ at p.

(4) For the basic example (3) in the note of the first week: a complex line bundle over a closed, oriented surface: construct a connection on that complex line bundle, and evaluate

$$\int \int_{\Sigma} \frac{i}{2\pi} F \; .$$

Note that the curvature is an $\operatorname{End}(E)$ -valued 2-form. For complex line bundles, $\operatorname{End}(E)$ is always a trivial bundle (Why?), and the above integration does make sense.