GEOMETRY II: HOMEWORK 3

DUE MARCH 13

A local trivialization, $E|_{\mathcal{U}} \cong \mathcal{U} \times \mathbb{R}^k$, is equivalent to local trivializing sections, $\{\mathfrak{s}_{\mu}\}_{\mu=1}^k$. Each section \mathfrak{s}_{μ} corresponds to the standard basis \mathfrak{e}_{μ} for \mathbb{R}^k . Given a connection ∇ , $\nabla \mathfrak{s}_{\nu}$ can be expressed as a linear combination of $\{\mathfrak{s}_{\mu}\}_{\mu=1}^k$, with the coefficients being 1-forms on \mathcal{U} . Namely,

$$abla \mathfrak{s}_{\nu} = \sum_{\mu=1}^{k} \omega_{\nu}^{\mu} \otimes \mathfrak{s}_{\mu} \quad \text{where } \omega_{\nu}^{\mu} \in \Omega^{1}(\mathcal{U}) \;.$$

The expression is a section of $T^*M \otimes E$ over \mathcal{U} . Sometimes \otimes is omitted.

Any local section can be expressed as $\sum_{\mu=1}^{k} \alpha^{\mu} \mathfrak{s}_{\mu}$ where $\alpha^{\mu} \in \mathcal{C}^{\infty}(\mathcal{U})$. Due to the properties of a connection,

$$\nabla (\sum_{\mu=1}^{k} \alpha^{\mu} \mathfrak{s}_{\mu}) = \sum_{\mu=1}^{k} (\mathrm{d}\alpha^{\mu}) \mathfrak{s}_{\mu} + \sum_{\mu=1}^{k} \alpha^{\mu} \nabla \mathfrak{s}_{\mu}$$
$$= \sum_{\mu=1}^{k} (\mathrm{d}\alpha^{\mu}) \mathfrak{s}_{\mu} + \sum_{\mu,\nu}^{k} \alpha^{\nu} \omega_{\nu}^{\mu} \mathfrak{s}_{\mu} = \sum_{\mu=1}^{k} (\sum_{\nu=1}^{k} \mathrm{d}\alpha^{\mu} + \omega_{\nu}^{\mu} \alpha^{\nu}) \mathfrak{s}_{\mu}$$

That is to say, ∇ in terms of the trivialization is $d + [\omega_{\nu}^{\mu}]$ acting on \mathbb{R}^{k} -valued functions.

(1) Endow E a bundle metric. A connection ∇ is called a *metric connection* if

$$\mathrm{d}\langle\mathfrak{s},\widetilde{\mathfrak{s}}
angle=\langle
abla\mathfrak{s},\widetilde{\mathfrak{s}}
angle+\langle\mathfrak{s},
abla\widetilde{\mathfrak{s}}
angle$$

for any two $\mathfrak{s}, \tilde{\mathfrak{s}} \in \Gamma(E)$. Prove that a metric connection always exists. (Just do the real vector bundle case.)

(2) Suppose that E is a real vector bundle with a bundle metric and a metric connection. In terms of an *orthonormal*, local trivializing sections, what can you say about ω_{ν}^{μ} ?

What about the complex case with the Hermitian metric?

(3) For those two examples in the lecture (regular surface case, and tautological bundle over CP¹), is the connection a metric connection?
 Basically, ω^μ_ν is given on some chart during the lecture. Do they obey the condition

Basically, ω_{ν}^{μ} is given on some chart during the lecture. Do they obey the condition you found in part (2)?