RIEMANN SURFACE HOMEWORK 11

DUE: TUESDAY, MAY 31

(1) The complex projective space \mathbb{CP}^n is the space of all complex lines in \mathbb{C}^{n+1} . In other words,

$$\mathbb{CP}^n = \frac{\mathbb{C}^{n+1} \setminus \{0\}}{(U_0, U_1, \dots, U_n) \sim (\lambda U_0, \lambda U_1, \dots, \lambda U_n) \text{ for } \lambda \in \mathbb{C} \setminus \{0\}}.$$

Note that \mathbb{CP}^1 is the Riemann sphere $\hat{\mathbb{C}}$. Prove that the *n*-th symmetric product of $\hat{\mathbb{C}}$ is \mathbb{CP}^n .

Hint: *n*-points in $\hat{\mathbb{C}}$ can be thought as zeros of a polynomial of degree less than or equal to n.