RIEMANN SURFACE HOMEWORK 10

DUE: TUESDAY, MAY 24

(1) Let $U \subset M$ be a open subset such that \overline{U} is compact, and ∂U consists of finitely many analytic arcs. Thus, each point $\zeta_0 \in \partial U$ admits a subharmonic barrier function. Given any continuous function $h(\zeta)$ on ∂U , consider

 $\mathcal{F} = \{ v : \text{subharmonic on } U \mid \limsup_{U \ni z \to \zeta} v(z) \le h(\zeta) \} .$

Denote the upper envelope of \mathcal{F} by u(z). Prove that

$$\lim_{U\ni z\to \zeta} u(z)=h(z)\ .$$

Hint: You can consult [Gameline, p.404–405].

- (2) Determine all bipolar Green's functions for the complex plane \mathbb{C} .
- (3) Determine all bipolar Green's functions for the complex plane $\hat{\mathbb{C}}$.