RIEMANN SURFACE HOMEWORK 9

DUE: TUESDAY, MAY 17

- (1) If f(z) is holomorphic, prove that $|f(z)|^{\alpha}$ ($\alpha \ge 0$) and $\log(1 + |f(z)|^2)$ are subharmonic.
- (2) Let $f: M \to N$ be a (non-constant) holomorphic map. If the Green's function exists for N, show that the Green's function exists for M and $g_M(p,q) \leq g_N(f(p), f(q))$.
- (3) Let $\Omega \subset M$ be an open set. For a point $q \in \partial \Omega$, choose a coordinate at q with z(q) = 0. A subharmonic barrier at q is a subharmonic function β defined by $\Omega' = \Omega \cap \{|z| < \rho\}$ for some $\rho > 0$ such that
 - $\beta(p) < 0$ for any $p \in \Omega'$, and $\beta(p) \to 0$ as $p \to q$;
 - $\limsup_{p \to q'} \beta < 0$ for any $q' \in \partial \Omega \cap \{0 < |z| < \rho\}$.
 - (a) Prove that β can be used to construct a subharmonic function on Ω with the above properties. (Hint: Let $-2C = \sup_{\Omega \cap \{\rho/2 \le |z| \le 3\rho/4\}} \beta$. Consider

$$\tilde{\beta} = \begin{cases} \max(\beta, -C) & q' \in \Omega \cap \{0 < |z| < \rho/2\} \\ -C & \text{otherwise} \end{cases}.$$

- (b) For the unit disk in \mathbb{C} , construct a subharmonic barrier at each point in the unit disk.
- (c) For the completement of the disk in C, construct a subharmonic barrier at each point in the unit disk.