RIEMANN SURFACE HOMEWORK 7

DUE: TUESDAY, APRIL 19

- (1) Suppose that g ≥ 1. Show that r(P⁻¹) = 1.
 As a consequence, the first gap n₁ (at any P) is 1.
- (2) Given any $P \in M$, a positive integer n is called a non-gap if $r(P^{-n}) = r(P^{-(n-1)}) + 1$. Suppose that i, j are both non-gaps. Show that i + j is also a non-gap.

In other words, non-gaps constitute a semi-group under addition.

(3) Suppose that $g \ge 2$. Denote the first g non-gaps by $\alpha_1 < \alpha_2 < \cdots < \alpha_g$. If $\alpha_1 > 2$, prove that there exists some $k \in \{1, 2, \ldots, g-1\}$ such that

$$\alpha_k + \alpha_{g-k} > 2g \; .$$

<u>Hint</u>: It is straightforward when g < 4. Thus, consider the case when $g \ge 4$, and assume

$$\alpha_k + \alpha_{g-k} = 2g \tag{(\bowtie)}$$

for any k. Since $\alpha_1 > 2$ and $g \ge 4$, there must exist some non-gap not divisible by α_1 . Let the smallest one be α_{r+1} . That is to say, the first (r+1) non-gaps are

$$\alpha_1, \alpha_2 = 2\alpha_1, \quad \cdots \quad , \alpha_r = r \alpha_1, \alpha_{r+1}.$$

By (\bowtie) ,

$$\alpha_{g-1} = 2g - \alpha_1 , \quad \cdots \quad , \alpha_{g-r} = 2g - r \alpha_1 , \alpha_{g-r-1} = 2g - \alpha_{r+1} .$$

What can you say about the non-gap $\alpha_1 + \alpha_{g-r-1}$?

(4) A (holomorphic) quadratic differential consists of the following data: a holomorphic function $f_{\alpha}(z_{\alpha})$ on each coordinate chart (U_{α}, z_{α}) such that

$$f_{\beta}(z_{\beta} \circ z_{\alpha}^{-1}) \left(\frac{\mathrm{d}z_{\beta}}{\mathrm{d}z_{\alpha}}\right)^2 = f_{\alpha}(z_{\alpha}) \quad \text{when } U_{\alpha} \cap U_{\beta} \neq \emptyset$$

It is convenient to write a quadratic differential as

$$f_{\alpha}(z_{\alpha}) \, (\mathrm{d} z_{\alpha})^2$$

Suppose that g > 1. Calculate the dimension of the space of holomorphic quadratic differentials.

<u>Hint</u>: Fix a nonzero holomorphic differential ω . Recall that $\deg(\omega) = 2g - 2$. Let μ be a holomorphic quadratic differential. Note that $\frac{\mu}{\omega^2}$ is a meromorphic function whose divisor is greater than or equal to $(\omega)^{-2}$. On the other hand, $f\omega^2$ defines a holomorphic quadratic differential for any $f \in L((\omega)^{-2})$.