RIEMANN SURFACE HOMEWORK 6

DUE: TUESDAY, APRIL 12

(1) Prove that the degree of a canonical divisor is $2g - 2$.

Hint: It is straightforward when $q = 0$. Thus, it suffices to consider the case when $q \ge 1$. We know that there exist non-trivial holomorphic differentials. Take one of them, and denote it by ζ . Since ζ is holomorphic, $(\zeta) \geq 1$. What does the Riemann–Roch theorem say for the divisor (ζ) ?

(2) Given any finite (distinct) points, P_1, \dots, P_n on M. Prove that there exists a meromorphic differential ω which is holomorphic and nonzero at these points.

Hint: We use the Riemann–Roch theorem (for any divisor):

$$
r(\mathfrak{A}^{-1}) = \deg \mathfrak{A} - g + 1 + i(\mathfrak{A}) \ .
$$

For each $j \in \{1, \ldots, n\}$, we would like to construct a meromorphic differential ω_j which is holomorphic at P_1, \dots, P_n , and is nonzero at P_j and zero at other P's. Then $\omega = \sum_{j=1}^n \omega_j$ would admit the required property. To find such ω_j , pick a point Q other than P's, and consider the Riemann–Roch theorem for $\mathfrak{A} = Q^{-(n+1)}P_1 \cdots P_n$ and $\mathfrak{A}P_j^{-1}$.

(3) Use (1) and (2) to give another proof of the Riemann–Hurwitz formula.

<u>Hint</u>: Suppose that $f : M_1 \to M_2$ is a non-constant holomorphic map. Choose a non-trivial meromorphic differential ω on M_2 . The *pull-back* of ω by f is a meromorphic differential on M_1 , and is denoted by $f^*\omega$. It is constructed as follows: Write the map f in terms of local coordinate:

$$
z \mapsto w = f(z)
$$

where f is a locally defined holomorphic function. It is common to abuse the notation here. Then, express ω in terms of the *w*-coordinate,

$$
\omega = g(w) \, \mathrm{d}w
$$

where g is a locally defined meromorphic function. Then, the pull-back of ω by f is

$$
g(f(z)) f'(z) \, \mathrm{d} z
$$

in terms of the z -coordinate. It is not hard to check the well-definedness (namely, the transition rule). Thus, $f^*\omega$ is a meromorphic differential on M_1 . Choose ω so that it is holomorphic and nonzero at the images of the branch points of f. Then analyze the relations between the degree of ω and that of $f^*\omega$.