RIEMANN SURFACE HOMEWORK 4

DUE: TUESDAY, MARCH 29

(1) Let M_1 and M_2 be two compact Riemann surfaces, and $f : M_1 \to M_2$ be a non-trivial holomorphic map. Denote the genus of M_1 and M_2 by g_1 and g_2 , respectively. Define the total branching number of f by

$$
B(f) = \sum_{P \in M_1} b_f(P) .
$$

Since f is non-trivial and M_1 is compact, the sum on the right hand side is a finite sum.

- (a) Show that B is always an even integer.
- (b) Analyze all the possible situations of f and M_2 for $g_1 = 0$.
- (c) Suppose that there is no branch point, i.e. $B = 0$. Prove that $g_1 \ge g_2$.

Hint: Use the Riemann–Hurwitz formula.

(2) Let M be a compact Riemann surface. A (non-trivial) meromorphic function f is defined to be a holomorphic map to $\hat{\mathbb{C}}$. Due to the discussion for $\deg(f)$, we know that

$$
\deg(f) = \sum_{P \in f^{-1}(0)} (b_f(P) + 1) = \sum_{P \in f^{-1}(\infty)} (b_f(P) + 1) .
$$

In other words, the total number of zeros of f is the same as that of poles (counting multiplicity).

Let us move on to the discussion of meromorphic differentials. Recall that the *order* of a meromorphic differential at some point p is defined to be $n \in \mathbb{Z}$ if

 $\omega = z^n h(z) dz$ in terms of a coordinate with $z(P) = 0$

where $h(z)$ is a locally defined, nowhere zero holomorphic function. We denote it by ord $P \omega = n$.

Suppose that ω is a (non-trivial) meromorphic differential on the Riemann sphere $\hat{\mathbb{C}}$. Prove that

$$
\sum_{P \in \hat{\mathbb{C}}} \operatorname{ord}_P \omega = -2.
$$

Hint: You may start with the case when $\omega_0 = z^{-1}dz = -w^{-1}dw$. Then use the fact that ω/ω_0 is a meromorphic function on $\hat{\mathbb{C}}$.

(3) Given two compact, oriented surfaces, the (oriented) connected sum is the procedure to construct another surface as shown in the following picture.

To explain more, choose two open sets in M and N such that they are diffeomorphic to the unit disk in \mathbb{R}^2 . Denote the open sets by $U \subset M$ and $V \subset N$. Let $U' \subset U$ and $V' \subset V$ be the image of the disk of radius $1/2$ under (the inverse of) the coordinate map. Then, the connected sum is

$$
M \# N = \frac{(M \backslash \overline{U'}) \prod (N \backslash \overline{V'})}{\sim}
$$

where we identify the points in $U\backslash \overline{U'}$ with the points in $V \backslash \overline{V'}$ by

$$
U \backslash \overline{U'} \cong D_1 \backslash \overline{D}_{\frac{1}{2}} \longrightarrow D_1 \backslash \overline{D}_{\frac{1}{2}} \cong V \backslash \overline{V'}.
$$

$$
re^{i\theta} \longmapsto \frac{1}{2r}e^{-i\theta}.
$$

- (a) Find out the relation between $\chi(M)$, $\chi(N)$ and $\chi(M \# N)$.
- (b) Find out the relation between $H_1(M)$, $H_1(N)$ and $H_1(M \# N)$, as well as the intersection theory.