RIEMANN SURFACE HOMEWORK 2

DUE: TUESDAY, MARCH 15

(1) If f is a holomorphic function defined on some domain containing $\{z \in \mathbb{C} \mid |z| \leq 1\}$ and u is a smooth function whose support is contained in the unit disk $D = \{z \in \mathbb{C} \mid |z| < 1\}$, then

$$
\iint_D f\left(\frac{\partial}{\partial \bar{z}}u\right) dx dy = -\iint_D \left(\frac{\partial}{\partial \bar{z}}f\right)u dx dy = 0.
$$

Prove the following version of the Weyl's lemma. Let φ be a measurable, square-integrable function on D such that

$$
\int\!\int_D \varphi \left(\frac{\partial}{\partial \bar{z}}u\right) \, \mathrm{d}x \, \mathrm{d}y = 0
$$

for any smooth function u with supp $u \subset D$. Prove that φ is a holomorphic function, i.e. φ is equal almost everywhere to a holomorphic function on D.

Here are some hints.

• Consider

$$
\eta(w) = \frac{-1}{\pi} \int \int_{\mathbb{C}} \frac{u(z)}{z - w} \,dx \,dy.
$$

Is η a smooth function? What is $\frac{\partial}{\partial \bar{w}} \eta$? Is the support of η compact, and contained in D?

- Surely you are allowed to use some facts from analysis, such as \mathcal{C}^{∞} functions with compact support are dense in L^2 functions.
- (2) (a) For simplicity, consider only smooth forms (functions, differential, or 2-forms) on \mathbb{R}^2 with *compact support*. Note that we can identify a 2-form with a function by

$$
f dx \wedge dy \longleftrightarrow f . \tag{\dagger}
$$

With this identification, $d(\alpha dx + \beta dy) = (\beta_x - \alpha_y) dx \wedge dy$ is identified with $\beta_x - \alpha_y$. Define a L^2 -pairing between functions by

$$
(f,g) = \int\int_{\mathbb{R}^2} f\bar{g} \, \mathrm{d}x \mathrm{d}y \; .
$$

Find out the L^2 -dual operator of d on functions and differentials. Namely, find out $\delta_0: \{1\text{-forms}\} \to \{\text{functions}\}$ and $\delta_1: \{\text{functions}\} \to \{1\text{-forms}\}$ such that

 $(df, \omega) = (f, \delta_0 \omega)$ and $(d\omega, f) = (\omega, \delta_1 f)$,

for any function f and any differential ω .

(b) If you do part (a) correctly, you shall find the following diagrams

function
$$
\frac{d}{\frac{d}{\delta_0}}
$$
 1-form $\frac{d}{\frac{d}{\delta_1}}$ 2-forms $V_0 \frac{A}{\frac{A}{A^T}} V_1 \frac{-A^T J}{\frac{J A}{J A}} V_2 \equiv V_0$

Now, consider the following setting:

 V_0 and V_1 are two *finite dimensional* vector space (over $\mathbb R$ for simplicity) with inner product. The map A is a linear map from V_0 to V_1 , and A^T is the transpose of A by using the inner product. The map J is a linear map from V_1 to itself, which plays the role of the *-operator on 1-forms. It satisfies $J^2 = -Id$ and $\langle Jv, Jw \rangle = \langle v, w \rangle$ for any $v, w \in V_1$.

Suppose that A^TJA is the zero map on V_0 . Construct an orthogonal decomposition of V_1 which is parallel to the Hodge decomposition of 1-forms, $L^2(M) = H \oplus E \oplus E^*$.

- (3) Consider $\pi : \mathbb{C} \to \mathbb{C}/\mathbb{Z}^2$ as defined in (2) of Homework 1. You may compare this exercise with that one. Let $p_1 = (0,0), p_2 = (\frac{1}{3},0), p_3 = (\frac{2}{3},0), p_4 = (0,\frac{1}{3})$ $\frac{1}{3}$, $p_5 = (\frac{1}{3}, \frac{1}{3})$ $\frac{1}{3}$, $p_6 = (\frac{2}{3}, \frac{1}{3})$ $(\frac{1}{3}),$ $p_7 = (0, \frac{2}{3})$ $(\frac{2}{3}), p_8 = (\frac{1}{3}, \frac{2}{3})$ $(\frac{2}{3})$ $p_9 = (\frac{2}{3}, \frac{2}{3})$ $\frac{2}{3}$, and consider $U_j = \{z \in \mathbb{C} \mid |z - p_j| < \frac{1}{3}\}$ $\frac{1}{3}$ for $j \in \{1, 2, \ldots, 9\}$. It is not hard to see that $\{U_j, z\}_{j=1}^9$ consists of a coordinate cover for \mathbb{C}/\mathbb{Z}^2 .
	- (a) Check that dx is a differential on \mathbb{C}/\mathbb{Z}^2 . (Namely, dx is a 1-form on each U_j . What happens to the coordinate transition? It is enough to check for U_1 and U_3 .)
	- (b) Is dx an exact differential? Does there exists a closed curve γ on \mathbb{C}/\mathbb{Z}^2 such that $\int_{\gamma} dx \neq 0$?
- (4) Fix $a > 0$ and $n \in \mathbb{N}$. Consider the following function defined on $D_a = \{z \in \mathbb{C} \mid |z| < a\},\$

$$
h(z) = \frac{1}{z^n} + \frac{\overline{z}^n}{a^{2n}}.
$$

Check that

$$
\lim_{r \to a^{-}} (*dh)|_{\partial D_{r}} = 0.
$$

The restriction of a 1-form on a curve is basically the same procedure for evaluating the line integral: if $\omega = \alpha(x, y)dx + \beta(x, y)dy$ and $\gamma : z(t) = x(t) + iy(t)$, then

$$
\omega|_{\gamma} = (\alpha(x(t), y(t)) x'(t) + \beta(x(t), y(t)) y'(t)) dt.
$$

You can check that it satisfies the change of variable formula when you change the parametrization of the curve γ , which is indeed the chain rule.