
RIEMANN SURFACE

HOMEWORK 2

DUE: TUESDAY, MARCH 15

(1) If f is a holomorphic function defined on some domain containing {z ∈ C | |z| ≤ 1} and u

is a smooth function whose support is contained in the unit disk D = {z ∈ C | |z| < 1},
then ∫ ∫

D
f

(
∂

∂z̄
u

)
dx dy = −

∫ ∫
D

(
∂

∂z̄
f

)
udx dy = 0 .

Prove the following version of the Weyl’s lemma. Let ϕ be a measurable, square-integrable

function on D such that ∫ ∫
D
ϕ

(
∂

∂z̄
u

)
dx dy = 0

for any smooth function u with suppu ⊂ D. Prove that ϕ is a holomorphic function, i.e. ϕ

is equal almost everywhere to a holomorphic function on D.

Here are some hints.

• Consider

η(w) =
−1

π

∫ ∫
C

u(z)

z − w
dx dy .

Is η a smooth function? What is ∂
∂w̄η? Is the support of η compact, and contained in

D?

• Surely you are allowed to use some facts from analysis, such as C∞ functions with

compact support are dense in L2 functions.

(2) (a) For simplicity, consider only smooth forms (functions, differential, or 2-forms) on R2

with compact support. Note that we can identify a 2-form with a function by

f dx ∧ dy ←→ f . (†)

With this identification, d(α dx+ β dy) = (βx − αy) dx∧ dy is identified with βx − αy.
Define a L2-pairing between functions by

(f, g) =

∫ ∫
R2

fḡ dxdy .

Find out the L2-dual operator of d on functions and differentials. Namely, find out

δ0 : {1-forms} → {functions} and δ1 : {functions} → {1-forms} such that

(df, ω) = (f, δ0ω) and (dω, f) = (ω, δ1f) ,

for any function f and any differential ω.
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(b) If you do part (a) correctly, you shall find the following diagrams

function
d // 1-form
δ0

oo
d // 2-forms
δ1

oo V0

A // V1
AT

oo
−AT J // V2 ≡ V0
JA
oo

Now, consider the following setting:

V0 and V1 are two finite dimensional vector space (over R for simplicity) with inner

product. The map A is a linear map from V0 to V1, and AT is the transpose of A by

using the inner product. The map J is a linear map from V1 to itself, which plays the

role of the ∗-operator on 1-forms. It satisfies J2 = −Id and 〈Jv, Jw〉 = 〈v, w〉 for any

v, w ∈ V1.

Suppose that ATJA is the zero map on V0. Construct an orthogonal decomposition of

V1 which is parallel to the Hodge decomposition of 1-forms, L2(M) = H ⊕ E ⊕ E∗.

(3) Consider π : C → C/Z2 as defined in (2) of Homework 1. You may compare this exercise

with that one. Let p1 = (0, 0), p2 = (1
3 , 0), p3 = (2

3 , 0), p4 = (0, 1
3), p5 = (1

3 ,
1
3), p6 = (2

3 ,
1
3),

p7 = (0, 2
3), p8 = (1

3 ,
2
3) p9 = (2

3 ,
2
3), and consider Uj = {z ∈ C | |z − pj | < 1

3} for

j ∈ {1, 2, . . . , 9}. It is not hard to see that {Uj , z}9j=1 consists of a coordinate cover for

C/Z2.

(a) Check that dx is a differential on C/Z2. (Namely, dx is a 1-form on each Uj . What

happens to the coordinate transition? It is enough to check for U1 and U3.)

(b) Is dx an exact differential? Does there exists a closed curve γ on C/Z2 such that∫
γ dx 6= 0?

(4) Fix a > 0 and n ∈ N. Consider the following function defined on Da = {z ∈ C | |z| < a},

h(z) =
1

zn
+

z̄n

a2n
.

Check that

lim
r→a−

(∗dh)|∂Dr = 0 .

The restriction of a 1-form on a curve is basically the same procedure for evaluating the

line integral: if ω = α(x, y)dx+ β(x, y)dy and γ : z(t) = x(t) + iy(t), then

ω|γ =
(
α(x(t), y(t))x′(t) + β(x(t), y(t)) y′(t)

)
dt .

You can check that it satisfies the change of variable formula when you change the parametriza-

tion of the curve γ, which is indeed the chain rule.
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