RIEMANN SURFACE HOMEWORK 1

DUE: TUESDAY, MARCH 8

A compact Riemann surface is a compact, Hausdorff topological space M with the data $\{U_{\alpha}, z_{\alpha}\}$ such that

- $\{U_{\alpha}\}$ is an open cover of M;
- $z_{\alpha}: U_{\alpha} \to \mathbb{C}$ is a homeomorphism onto an open subset of \mathbb{C} ;
- for any α, β with $U_{\alpha} \cap U_{\beta} \neq \emptyset$, $z_{\beta} \circ z_{\alpha}^{-1} : z_{\alpha}(U_{\alpha} \cap U_{\beta}) \to z_{\beta}(U_{\alpha} \cap U_{\beta})$ is a biholomorphism (between open subsets of \mathbb{C}).
- (1) Consider the Riemann sphere $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ with the Riemann surface structure defined during the class. Let $U_0 = \hat{\mathbb{C}} \setminus \{\infty\}$ with coordinate z, and $U_1 = \hat{\mathbb{C}} \setminus \{0\}$ with coordinate w. The transition is w = 1/z. Consider the following 1-form

$$\psi = \frac{1}{(1+|z|^2)^2} dz$$
 on U_0 .

- (a) Work out its expression in terms of (U_1, w) .
- (b) Consider the (directed) curve γ : $\{z = e^{it} \in \mathbb{C} \mid 0 \le t \le \pi\}$. Evaluate $\int_{\gamma} \psi$ by using the (U_0, z) coordinate.
- (c) Let γ be the same curve as in (b). Evaluate $\int_{\gamma} \psi$ by using the (U_1, w) coordinate.
- (d) Is $\psi + \overline{\psi}$ a harmonic differential?
- (e) Let f(z) be a nontrivial rational function on \mathbb{C} , i.e. the quotient of two polynomials. It naturally extends as a holomorphic map from $\hat{\mathbb{C}}$ to $\hat{\mathbb{C}}$. Find out its degree. (You may assume the enumerator and the denominator have no common factor.)
- (2) Consider the \mathbb{Z}^2 -action on \mathbb{C} defined by $(m, n) \cdot z = z + m + ni$. The quotient space \mathbb{C}/\mathbb{Z}^2 is a Riemann surface, and the quotient map $\pi : \mathbb{C} \to \mathbb{C}/\mathbb{Z}^2$ is a holomorphic map. Here is one way to construct the local coordinate charts. Let U be the image of $\{z \in \mathbb{C} \mid 0 < \operatorname{Re} z < 1\}$ under π , and V be the image $\{z \in \mathbb{C} \mid \frac{1}{2} < \operatorname{Re} z < \frac{3}{2}\}$ under π .

The map $z \mapsto \exp(2\pi z)$ descends to a coordinate on U and V. It maps U homeomorphically onto the annulus $\{\xi \in \mathbb{C} \mid 1 < |\xi| < e^{2\pi}\}$, and maps V homeomorphically onto the annulus $\{\eta \in \mathbb{C} \mid e^{\pi} < |\eta| < e^{3\pi}\}$. The image of $U \cap V$ is

$$\{\xi \in \mathbb{C} \mid 1 < |\xi| < e^{\pi} \text{ or } e^{\pi} < |\xi| < e^{2\pi} \} \text{ and}$$
$$\{\eta \in \mathbb{C} \mid e^{\pi} < |\eta| < e^{2\pi} \text{ or } e^{2\pi} < |\eta| < e^{3\pi} \}$$

respectively. The transition function is

$$\eta = \begin{cases} e^{2\pi} \xi & \text{when } 1 < |\xi| < e^{\pi} \\ \xi & \text{when } e^{\pi} < |\xi| < e^{2\pi} \end{cases}$$

- (a) Consider the 1-form $\varphi = \frac{1}{\xi} d\xi$ on U. Work out its expression in terms of the η coordinate. Show that it defines a holomorphic differential on \mathbb{C}/\mathbb{Z}^2 . (More precisely, it extends to define a holomorphic differential.)
- (b) Evaluate $\iint_U \varphi \wedge *\bar{\varphi}$.
- (c) Write ξ as x + iy (not z). Consider the following 1-form on U:

$$\frac{x\mathrm{d}x + y\mathrm{d}y}{x^2 + y^2}$$

Find out the star of this 1-form, and show that this 1-form define a harmonic 1-form on \mathbb{C}/\mathbb{Z}^2 .

(d) With the theory of Mittag-Leffler, the following expression defines a meromorphic function on \mathbb{C} .

$$\wp(z) = \frac{1}{z^2} + \sum_{\substack{(m,n) \in \mathbb{Z}^2 \\ (m,n) \neq (0,0)}} \left\{ \frac{1}{(z+m+ni)^2} - \frac{1}{(m+ni)^2} \right\}$$

It is not hard to check that $\wp(z+1) = \wp(z)$ and $\wp(z+i) = \wp(z)$ for any $z \in \mathbb{C}$. It follows that $\wp(z)$ can be regarded as a meromorphic function on \mathbb{C}/\mathbb{Z}^2 , or equivalently, a holomorphic map from \mathbb{C}/\mathbb{Z}^2 to $\hat{\mathbb{C}}$. Find out the degree of this map.

(3) Consider the following change of coordinate on \mathbb{R}^2 :

$$(x,y) \mapsto (u,v) = (x,y+x)$$
.

Introduce the corresponding complex coordinate z = x + iy and w = u + iv. Does there exist a nontrivial function on \mathbb{R}^2 which is both analytic in the z and w coordinate?