## DIFFERENTIAL GEOMETRY II HOMEWORK 9

DUE: WEDNESDAY, MAY 20

For any  $m \in \mathbb{Z}$ , consider the 3-manifold  $X_m$  defined by

$$X_m = (\mathbb{R}^2 \times \mathbf{S}^1) \cup_{\psi_m} (\mathbb{R}^2 \times \mathbf{S}^1)$$
.

where the gluing map is defined by

$$\psi_m((r,e^{i\theta}),e^{i\alpha}) = ((\frac{1}{r},e^{i\theta}),e^{i(\alpha+m\theta)}).$$

(1) When m = 1, check that

$$f = \frac{\cos \alpha}{(1+r^2)^{\frac{1}{2}}}$$

is Morse function with two critical points.

- (2) Construct Morse functions for  $X_m$  with m=0 and m=2.
- (3) Construct a 1-form  $\Theta$  on  $X_1$  such that

$$d\Theta = \frac{1}{2\pi} \frac{r \, dr \wedge d\theta}{(1+r^2)^2} .$$

Then, compute

$$\int_{X_1} \frac{1}{2\pi} \frac{r \, \mathrm{d} r \wedge \mathrm{d} \theta}{(1+r^2)^2} \wedge \Theta \ .$$

[Hint: Try  $\Theta = d\alpha + a(r)d\theta$ . You have to choose a(r) such that the form is smooth on both charts.]