DIFFERENTIAL GEOMETRY II HOMEWORK 8

DUE: WEDNESDAY, MAY 13

(1) Let X be a 2n-dimensional manifold which is compact, connected, oriented with non-empty boundary. Denote by Y the boundary of X. Suppose that $\mathrm{H}^n_\mathrm{d}(Y)=0$. By the Poincaré duality, $\mathrm{H}^{n-1}_\mathrm{d}(Y)=0$ as well.

Fix a diffeomorphism of a neighborhood of Y in X with $Y \times [0,1)$. For any cohomology class in $\mathrm{H}^n_\mathrm{d}(X)$, show that there exists a representative which vanishes on $Y \times [0,\frac{1}{2})$. [Hint: Any n-form α on X can be written as $\xi + \mathrm{d}t \wedge \eta$ when restricted on $Y \times [0,1)$, where ξ is a t-dependent n-form on Y and η is a t-dependent (n-1)-form on Y. The closedness of α implies that $\mathrm{d}_Y \xi = 0$ and $\frac{\partial}{\partial t} \xi = \mathrm{d}_Y \eta$.]

(2) Let C and Y be compact, connected, oriented, boundaryless manifolds of dimension 2n and 2n-1, respectively. Suppose that there is an embedding ι of $Y\times (-1,1)$ into C such that $C\setminus \iota(Y\times \{0\})$ has two components. Denote this two components by X_1 and X_2 .

If $H_d^n(Y) = 0 = H_d^{n-1}(Y)$, prove that the restriction map

$$\mathrm{H}^n_\mathrm{d}(C) \to \mathrm{H}^n_\mathrm{d}(X_1) \oplus \mathrm{H}^n_\mathrm{d}(X_2)$$

is an isomorphism. [Hint: The surjectivity basically follows from (1). You will need $H_d^{n-1}(Y) = 0$ for the injectivity. You are asked to work out the Meyer-Vietories sequence by hand (if you know what it is), and do not simply invoke it.]

- (3) For the following two manifolds of dimension 4, find out b_+ and b_- .
 - (a) $\mathbf{S}^2 \times \mathbf{S}^2$.
 - (b) $\mathbf{T}^4 = \mathbf{S}^1 \times \mathbf{S}^1 \times \mathbf{S}^1 \times \mathbf{S}^1$.

[Note: The Künneth formula asserts that $H^k_d(M_1 \times M_2) = \bigoplus_{i=0}^k (H^i_d(M_1) \otimes H^{k-i}_d(M_2))$.]