DIFFERENTIAL GEOMETRY II HOMEWORK 6

DUE: WEDNESDAY, APRIL 22

(1) [Toy model of the Hodge Theorem] Let $V^{0}, V^{1}, \cdots, V^{n}$ be finite dimensional vector spaces (over \mathbb{R}) with inner product. Suppose that there are linear maps $A_{j}: V^{j} \rightarrow V^{j+1}$ such that $A_{j+1} \circ A_{j}=0$. Such a system is usually called a chain complex, and is denoted by (V, A).

$$
0 \longrightarrow V^{0} \xrightarrow{A_{0}} V^{1} \xrightarrow{A_{1}} \cdots \quad \xrightarrow{A_{j-1}} V^{j} \xrightarrow{A_{j}} \cdots \quad \xrightarrow{A_{n-1}} V^{n} \longrightarrow
$$

It is convenient to set A_{-1} and A_{n} to be the zero map. The cohomology of (V, A) is defined to be

$$
\mathrm{H}^{j}(V, A)=\frac{\operatorname{ker} A_{j}}{\operatorname{im} A_{j-1}}
$$

With the help of the inner product, we may consider the adjoint operator of A_{j}, A_{j}^{*} : $V^{j+1} \rightarrow V^{j}$, and introduce the operator $\Delta_{j}=A_{j-1} A_{j-1}^{*}+A_{j}^{*} A_{j}$. Let $\mathcal{H}^{j}=\operatorname{ker} \Delta_{j}$.
(a) Prove that decomposition: $V^{j}=\mathcal{H}^{j} \oplus \Delta_{j}\left(V^{j}\right)$. As explained in class, it implies that $V^{j}=\mathcal{H}^{j} \oplus A_{j-1} A_{j-1}^{*}\left(V^{j}\right) \oplus A_{j}^{*} A_{j}\left(V^{j}\right)=\mathcal{H}^{j} \oplus A_{j-1} V^{j-1} \oplus A_{j}^{*} V^{j+1}$.
(b) Show that $\mathrm{H}^{j}(V, A) \cong \mathcal{H}^{j}$.
(c) Prove that Δ_{j} maps $A_{j-1} V^{j-1}$ isomorphically onto itself. Also prove the same statement for $A_{j}^{*} V^{j+1}$.
(d) Prove that the spectral (eigenspaces) decomposition of Δ_{j} on $A_{j-1} V^{j-1}$ is equivalent to the spectral decomposition of Δ_{j-1} on $A_{j-1}^{*} V^{j}$.
(e) We know that there exists a constant $c>0$ such that $\|v\| \leq c\left\|\Delta_{j} v\right\|$ for any $v \in$ $\left(\mathcal{H}^{j}\right)^{\perp}=\Delta_{j} V^{j} \subset V^{j}$. What is the best possible choice of c here?
(f) The Euler characteristic of a sequence of vector spaces $\left\{W^{j}\right\}_{j=0}^{n}$ is defined to be $\chi(W)=\sum_{j=0}^{n}(-1)^{j} \operatorname{dim} W^{j}$. Prove that $\chi(\mathcal{H})=\chi(V)$.
(g) Does the Poincaré duality hold in this setting? Explain your reason.
(2) Consider the Green operator G defined in [W; Definition 6.9]. Show that G is a bounded, self-adjoint operator which takes bounded sequences into sequences with Cauchy subsequences. [Hint: It is not surprising that you have to invoke Theorem 6.6.]

Also, read Proposition 6.10. You don't have to submit this part.
(3) Exercise 7 of [W; Chapter 6]. It is the L^{2}-norm on T^{2}, up to a factor of 2π. Roughly speaking, it says that the Laplace dominates all the second order derivatives.
[Hint: Perform integration by parts.]
(4) Exercise 8 of [W; Chapter 6]. It asks you to work out the Rellich lemma in the simplest case by hand.

