DIFFERENTIAL GEOMETRY II HOMEWORK 5

DUE: WEDNESDAY, APRIL 15

- (1) Let V be a finite dimensional vector space with an inner product and a chosen orientation. With the inner product and the star operator defined in class, prove the following properties.
 - (a) $\langle w_1 \wedge \cdots \wedge w_k, v_1 \wedge \cdots \wedge v_k \rangle = \det \langle w_i, v_j \rangle$ for any $w_1 \wedge \cdots \wedge w_k, v_1 \wedge \cdots \wedge v_k \in \Lambda^k V$. The pairing $\langle w_i, v_j \rangle$ is the given inner product on V.
 - (b) $\langle w, v \rangle = *(w \wedge *v)$ for any $w, v \in \Lambda^k V$.
- (2) On an oriented, Riemannian manifold, check that $*\Delta = \Delta *$.
- (3) On \mathbb{R}^n with the standard metric, show that the Laplace–Beltrami operator acting on a k-form

$$\alpha = \sum_{i_1 < \dots < i_k} \alpha_I \, \mathrm{d} x_{i_1} \wedge \dots \wedge \mathrm{d} x_{i_k}$$

reads

$$\Delta \alpha = -\sum_{i_1 < \cdots < i_k} \left(\sum_{j=1}^n \frac{\partial^2 \alpha_I}{\partial x_j^2} \right) \, \mathrm{d} x_{i_1} \wedge \cdots \wedge \mathrm{d} x_{i_k} \; .$$

- (4) On an oriented, Riemannian manifold M, prove that $\Delta f = -\operatorname{div} \nabla f$ for any $f \in \mathcal{C}^{\infty}(M)$. The right hand side is defined in (5) of Homework 3.
- (5) On an oriented, Riemannian manifold M^n , choose a local coordinate $\{x^j\}_{j=1}^n$ such that $dx^1 \wedge \cdots \wedge dx^n$ is positively oriented. Let g_{ij} be the coefficients of the Riemannian metric. It is not hard to see that $*1 = \sqrt{\det g_{ij}} dx^1 \wedge \cdots \wedge dx^n$ and $*(\sqrt{\det g_{ij}} dx^1 \wedge \cdots \wedge dx^n) = 1$.
 - (a) Find out $*dx^{j}$. In any case, it shall be a linear combination of $\{dx^{i_{1}} \wedge \cdots \wedge dx^{i_{n-1}}\}_{i_{1} < \cdots < i_{n-1}}$, and (1.b) would determine the coefficients. Also, note that $\langle dx^{i}, dx^{j} \rangle = g^{ij}$, the inverse of g_{ij} . [*Hint*: It is convenient to introduce the (n-1)-form $\xi_{i} = (-1)^{i-1} dx^{1} \wedge \cdots \wedge dx^{i} \wedge \cdots \wedge dx^{n} = \iota_{\partial_{i}} (dx^{1} \wedge \cdots \wedge dx^{n})$.]
 - (b) Work out the expression of $\Delta f = \delta df$ in the local coordinate system. From this expression, it shall be easier to see that $\Delta = -\operatorname{div} \nabla$ is a self-adjoint operator.