
DIFFERENTIAL GEOMETRY II

HOMEWORK 4

DUE: WEDNESDAY, APRIL 8

(1) Exercise 3 of Chapter 5 in [dC, p.119] (about the non-existence of conjugate points).

(2) Exercise 5 of Chapter 10 in [dC, p.238] (the Sturm comparison theorem).

The rest of this homework set is about the geometric properties of a submanifold. These prop-

erties are mainly about how the submanifold sits inside the ambient manifold, but not just about

the metric on the submanifolds. In this regards, they are usually referred as extrinsic properties of

the submanifolds. The reference is [dC, chapter 6] and [CE, section 1.7].

Let (M̄n+k, ḡ) be a Riemannian manifold, and denote its Levi-Civita connection by ∇̄. Suppose

that Mn is a submanifold of M̄ . Then ḡ restricts to a Riemannian metric g on M . For any p ∈M ,

TpM̄ = TpM ⊕ (TpM)⊥ .

The second summand is the fiber of the normal bundle of M in M̄ .

In what follows, X,Y, Z, . . . are local vector fields on M , and X̄, Ȳ , Z̄, . . . are their local extensions

to M̄ . The local normal vector fields (sections of (TM)⊥ ⊂ TM̄) will be denoted by η, ζ, . . ..

(3) Check that the following map is symmetric, and functional linear :

II(X,Y ) = ∇̄X̄ Ȳ −∇XY

According to (4) of homework 1, it takes value in the normal bundle. It is called the second

fundamental form, or the shape tensor of M in M̄ .

Given a normal vector (field) η, the quantity IIη(X,Y ) = ḡ(II(X,Y ), η) is called the

second fundamental form of M in M̄ along η. You can consult [dC, p.129] for the case

when k = 1, which is closely related to the story you learnt in undergraduate geometry.

In a way the second fundamental form encodes the curvature of the ambient manifold M̄ . You

can image that the curvatures of M and M̄ are related to each other by the second fundamental

form. Prove the following formulae.

(4) Th Gauss equation:

ḡ(R̄(X,Y )Z,W ) = g(R(X,Y )Z,W ) + ḡ(II(X,Z), II(Y,W ))− ḡ(II(X,W ), II(Y,Z)) .
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(5) The Codazzi equation:

ḡ(R̄(X,Y )Z, η) = (∇̄XII)(Y, Z, η)− (∇̄Y II)(X,Z, η) .

Here, II is considered as a tensor defined by II(X,Y, η) = ḡ(II(X,Y ), η). Thus,

(∇̄XII)(Y,Z, η) = X (IIη(Y, Z))− IIη(∇XY,Z)− IIη(Y,∇XZ)− ḡ(II(Y, Z), ∇̄Xη) .

If the second fundamental form of M vanishes, M is called a totally geodesic submanifold. It

implies that any geodesic of (M, g) is also a geodesic in (M̄, ḡ).

Another notion is the mean curvature vector of M , which is defined to be the trace (with respect

to g) of the second fundamental form. Namely,

H =
n∑
j=1

II(ej , ej)

where {ej} is a local orthonormal frame. The mean curvature vector is a section of the normal

bundle. If H vanishes, the submanifold is called a minimal submanifold. Clearly a totally geodesic

submanifold is minimal.

(6) Bonus Suppose that M is orientable. Consider an orientation-compatible local coordinate

system {xj}. The volume form of (M, g) is
√

det(gij) dx1 ∧ · · · dxn. It is not hard to show

that such an element is independent of the choice of coordinates. If M is also compact, its

volume is defined to be
∫
M

√
det(gij) dx1 ∧ · · ·dxn.

Let η be a normal vector field of M . Consider the deformation of M along η: Fs(p) =

expp(s η(p)). In other words, Fs : M × (−ε, ε) is a one-parameter family of embeddings of

M into M̄ with F0 to be the original embedding and d
ds |s=0Fs = η. The main purpose of

this exercise is to compute d
ds |s=0vol(Fs(M)). In terms of local coordinate, it is∫

M

(
d

ds

∣∣
s=0

√
det(gij(s))

)
dx1 ∧ · · · dxn .

Due to (1) of Homework 2 last semester, we have

d

ds

∣∣
s=0

√
det(gij(s)) =

1

2
gij
(

d

ds

∣∣
s=0

gij(s)

) √
det(gij)

Prove that

d

ds

∣∣
s=0

gij(s) = −2ḡ

(
η, ∇̄F0∗ ( ∂

∂xi
)F0∗(

∂

∂xj
)

)
,

and use it to conclude that d
ds |s=0vol(Fs(M)) = −

∫
M ḡ(η,H)

√
det(gij) dx1 ∧ · · · dxn.

Roughly speaking, the mean curvature vector is the negative gradient of the volume func-

tional. Minimal submanifolds are the critical points of the volume functional. [Hint : It

uses similar properties in the discussion of the Jacobi field equation.]
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