DIFFERENTIAL GEOMETRY II HOMEWORK 4

DUE: WEDNESDAY, APRIL 8

(1) Exercise 3 of Chapter 5 in [dC, p.119] (about the non-existence of conjugate points).

(2) Exercise 5 of Chapter 10 in [dC, p.238] (the Sturm comparison theorem).

The rest of this homework set is about the geometric properties of a submanifold. These properties are mainly about how the submanifold sits inside the ambient manifold, but not just about the metric on the submanifolds. In this regards, they are usually referred as *extrinsic* properties of the submanifolds. The reference is [dC, chapter 6] and [CE, section 1.7].

Let $(\overline{M}^{n+k}, \overline{g})$ be a Riemannian manifold, and denote its Levi-Civita connection by ∇ . Suppose that M^n is a submanifold of \overline{M} . Then \overline{g} restricts to a Riemannian metric g on M. For any $p \in M$,

$$T_p \bar{M} = T_p M \oplus (T_p M)^{\perp}$$

The second summand is the fiber of the normal bundle of M in \overline{M} .

In what follows, X, Y, Z, \ldots are local vector fields on M, and $\overline{X}, \overline{Y}, \overline{Z}, \ldots$ are their local extensions to \overline{M} . The local normal vector fields (sections of $(TM)^{\perp} \subset T\overline{M}$) will be denoted by η, ζ, \ldots

(3) Check that the following map is symmetric, and functional linear:

$$\mathbb{I}(X,Y) = \bar{\nabla}_{\bar{X}}\bar{Y} - \nabla_X Y$$

According to (4) of homework 1, it takes value in the normal bundle. It is called the *second* fundamental form, or the shape tensor of M in \overline{M} .

Given a normal vector (field) η , the quantity $\mathbf{I}_{\eta}(X,Y) = \bar{g}(\mathbf{I}(X,Y),\eta)$ is called the second fundamental form of M in \bar{M} along η . You can consult [dC, p.129] for the case when k = 1, which is closely related to the story you learnt in undergraduate geometry.

In a way the second fundamental form encodes the curvature of the ambient manifold \overline{M} . You can image that the curvatures of M and \overline{M} are related to each other by the second fundamental form. Prove the following formulae.

(4) Th Gauss equation:

$$\bar{g}(R(X,Y)Z,W) = g(R(X,Y)Z,W) + \bar{g}(\mathbb{I}(X,Z),\mathbb{I}(Y,W)) - \bar{g}(\mathbb{I}(X,W),\mathbb{I}(Y,Z))$$

(5) The Codazzi equation:

$$\bar{g}(\bar{R}(X,Y)Z,\eta) = (\bar{\nabla}_X \mathbf{I})(Y,Z,\eta) - (\bar{\nabla}_Y \mathbf{I})(X,Z,\eta) .$$

Here, II is considered as a tensor defined by $II(X, Y, \eta) = \bar{g}(II(X, Y), \eta)$. Thus,

$$(\bar{\nabla}_X \mathbf{I} \mathbf{I})(Y, Z, \eta) = X \left(\mathbf{I}_{\eta}(Y, Z) \right) - \mathbf{I}_{\eta}(\nabla_X Y, Z) - \mathbf{I}_{\eta}(Y, \nabla_X Z) - \bar{g}(\mathbf{I}(Y, Z), \bar{\nabla}_X \eta) .$$

If the second fundamental form of M vanishes, M is called a *totally geodesic* submanifold. It implies that any geodesic of (M, g) is also a geodesic in $(\overline{M}, \overline{g})$.

Another notion is the *mean curvature vector* of M, which is defined to be the trace (with respect to g) of the second fundamental form. Namely,

$$H = \sum_{j=1}^{n} \mathbb{I}(e_j, e_j)$$

where $\{e_j\}$ is a local orthonormal frame. The mean curvature vector is a section of the normal bundle. If H vanishes, the submanifold is called a *minimal* submanifold. Clearly a totally geodesic submanifold is minimal.

(6) Bonus Suppose that M is orientable. Consider an orientation-compatible local coordinate system $\{x^j\}$. The volume form of (M, g) is $\sqrt{\det(g_{ij})} dx^1 \wedge \cdots dx^n$. It is not hard to show that such an element is independent of the choice of coordinates. If M is also compact, its volume is defined to be $\int_M \sqrt{\det(g_{ij})} dx^1 \wedge \cdots dx^n$.

Let η be a normal vector field of M. Consider the deformation of M along η : $F_s(p) = \overline{\exp}_p(s \eta(p))$. In other words, $F_s : M \times (-\epsilon, \epsilon)$ is a one-parameter family of embeddings of M into \overline{M} with F_0 to be the original embedding and $\frac{d}{ds}|_{s=0}F_s = \eta$. The main purpose of this exercise is to compute $\frac{d}{ds}|_{s=0}$ vol $(F_s(M))$. In terms of local coordinate, it is

$$\int_M \left(\frac{\mathrm{d}}{\mathrm{d}s} \big|_{s=0} \sqrt{\mathrm{det}(g_{ij}(s))} \right) \, \mathrm{d}x^1 \wedge \cdots \, \mathrm{d}x^n$$

Due to (1) of Homework 2 last semester, we have

$$\frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0}\sqrt{\mathrm{det}(g_{ij}(s))} = \frac{1}{2}g^{ij}\left(\frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0}g_{ij}(s)\right)\sqrt{\mathrm{det}(g_{ij})}$$

Prove that

$$\frac{\mathrm{d}}{\mathrm{d}s}|_{s=0}g_{ij}(s) = -2\bar{g}\left(\eta, \bar{\nabla}_{F_{0_*}\left(\frac{\partial}{\partial x^i}\right)}F_{0_*}\left(\frac{\partial}{\partial x^j}\right)\right)$$

and use it to conclude that $\frac{d}{ds}|_{s=0}$ vol $(F_s(M)) = -\int_M \bar{g}(\eta, H) \sqrt{\det(g_{ij})} dx^1 \wedge \cdots dx^n$. Roughly speaking, the mean curvature vector is the negative gradient of the volume functional. Minimal submanifolds are the critical points of the volume functional. [*Hint*: It uses similar properties in the discussion of the Jacobi field equation.]