DIFFERENTIAL GEOMETRY II HOMEWORK 3

DUE: WEDNESDAY, MARCH 25

(1) By using [CE, (1.10)], it is not hard to check that a metric g has constant sectional curvature K if and only if

$$
g(R(x, y) z, w)=K(g(x, w) g(y, z)-g(x, z) g(y, w))
$$

In terms of a local orthonormal frame $\left\{e_{j}\right\}$, the condition reads $R_{i j i j}=K=-R_{i j j i}$ for any $i \neq j$, and other curvature components vanishes. Here, $R_{i j k \ell}=g\left(R\left(e_{k}, e_{\ell}\right) e_{j}, e_{i}\right)$. Check the following metrics has constant sectional curvature, and finds out the sectional curvature. (c is a positive constant.)
(a) $g=\left(\frac{2 c}{1+|x|^{2}}\right)^{2} \sum_{j}\left(\mathrm{~d} x^{j}\right)^{2}$ on \mathbb{R}^{n}.
(b) $g=\left(\frac{2 c}{1-|x|^{2}}\right)^{2} \sum_{j}\left(\mathrm{~d} x^{j}\right)$ on B^{n}.
[Remark: In terms of an orthonormal frame, $\Omega_{j}^{i}=\frac{1}{2} R_{i j k \ell} \omega^{k} \wedge \omega^{\ell}$.]
(2) Let (M, g) be a Riemannian manifold. Suppose that $\gamma:[0, \ell] \rightarrow M$ is a geodesic.
(a) Denote the tangent vector field of γ by T. Check that T and $t T$ are both Jacobi fields along γ. These two vector fields correspond to uninteresting geodesic variations of γ.
(b) For any Jacobi field J along γ, prove that $g(J, T)$ is a affine function in t, i.e. $g(J, T)=$ $a_{0}+a_{1} t$. Also determine the coefficients a_{0} and a_{1}.
(c) Due to part (a) and (b), we may focus on those Jacobi fields J obeying $g(J, T) \equiv 0$. If the manifold (M, g) has constant sectional curvature, work out the general expression of a Jacobi field along γ (in terms of a parallel, orthonormal frame $\left\{E_{j}\right\}$ along γ). And determine when a conjugate point occur along γ.
(3) Exercise 7 of Chapter 3 in [dC, p.83] (about the geodesic frame). [Hint: Consider the exponential map at p. Choose an orthonormal basis $\left\{e_{j}\right\}$ for $T_{p} M$, and parallel transport them along radial geodesics.]
(4) Exercise 7 of Chapter 4 in [dC, p.106] (about the second Bianchi identity). [Remark: In [dC], the notation $(\nabla R)(U, V, W, X, Y)$ means $\left(\nabla_{Y} R\right)(U, V, W, X)$, and thus is equal to

$$
\begin{aligned}
& \left.\left.Y(g(R(U, V) W, X))-g\left(R\left(\nabla_{Y} U, V\right) W, X\right)\right)-g\left(R\left(U, \nabla_{Y} V\right) W, X\right)\right) \\
& \left.\left.\quad-g\left(R(U, V)\left(\nabla_{Y} W\right), X\right)\right)-g\left(R(U, V) W, \nabla_{Y} W\right)\right)
\end{aligned}
$$

In most other books, $(\nabla R)(U, V, W, X, Y)$ means $\left(\nabla_{U} R\right)(V, W, X, Y)$.]
(5) $\{$ From $[\mathrm{dC}$, exercise $8 \& 9$ of ch.3]\} On a Riemannian manifold (M, g), introduce the following notions.

- For a smooth function $f: M \rightarrow \mathbb{R}$, its gradient, ∇f, is the vector field defined by $g(\nabla f, X)=X(f) \quad$ for any vector field X.
- For a vector field V, its divergence, $\operatorname{div} V$, is the smooth function defined to be the trace of the linear map $X \mapsto \nabla_{X} V$.
- For a smooth function f, its Laplacian, Δf, is the smooth function $\operatorname{div}(\nabla f)$.

You are asked to work out these notions in terms of a local coordinate system $\left\{x^{j}\right\}$. Denote the coefficients of the metric by $g_{i j}$.
(a) Write ∇f as $a^{j} \frac{\partial}{\partial x^{j}}$; find out a^{j}.
(b) For a vector field $V=v^{j} \frac{\partial}{\partial x^{j}}$; find out $\operatorname{div} V$.
(c) Combine part (a) and (b) to write down the expression of Δf in local coordinate.

