DIFFERENTIAL GEOMETRY II HOMEWORK 3

DUE: WEDNESDAY, MARCH 25

(1) By using [CE, (1.10)], it is not hard to check that a metric g has constant sectional curvature K if and only if

$$g(R(x, y)z, w) = K(g(x, w) g(y, z) - g(x, z) g(y, w))$$

In terms of a local orthonormal frame $\{e_j\}$, the condition reads $R_{ijij} = K = -R_{ijji}$ for any $i \neq j$, and other curvature components vanishes. Here, $R_{ijk\ell} = g(R(e_k, e_\ell)e_j, e_i)$. Check the following metrics has constant sectional curvature, and finds out the sectional curvature. (*c* is a positive constant.)

(a) $g = \left(\frac{2c}{1+|x|^2}\right)^2 \sum_j (\mathrm{d}x^j)^2$ on \mathbb{R}^n . (b) $g = \left(\frac{2c}{1-|x|^2}\right)^2 \sum_j (\mathrm{d}x^j)$ on B^n .

[*Remark*: In terms of an orthonormal frame, $\Omega_j^i = \frac{1}{2} R_{ijk\ell} \, \omega^k \wedge \omega^\ell$.]

- (2) Let (M, g) be a Riemannian manifold. Suppose that $\gamma : [0, \ell] \to M$ is a geodesic.
 - (a) Denote the tangent vector field of γ by T. Check that T and tT are both Jacobi fields along γ . These two vector fields correspond to uninteresting geodesic variations of γ .
 - (b) For any Jacobi field J along γ , prove that g(J,T) is a affine function in t, i.e. $g(J,T) = a_0 + a_1 t$. Also determine the coefficients a_0 and a_1 .
 - (c) Due to part (a) and (b), we may focus on those Jacobi fields J obeying $g(J,T) \equiv 0$. If the manifold (M,g) has constant sectional curvature, work out the general expression of a Jacobi field along γ (in terms of a parallel, orthonormal frame $\{E_j\}$ along γ). And determine when a conjugate point occur along γ .
- (3) Exercise 7 of Chapter 3 in [dC, p.83] (about the geodesic frame). [*Hint*: Consider the exponential map at p. Choose an orthonormal basis $\{e_j\}$ for T_pM , and parallel transport them along radial geodesics.]
- (4) Exercise 7 of Chapter 4 in [dC, p.106] (about the second Bianchi identity). [Remark: In [dC], the notation $(\nabla R)(U, V, W, X, Y)$ means $(\nabla_Y R)(U, V, W, X)$, and thus is equal to

$$Y(g(R(U,V)W,X)) - g(R(\nabla_Y U,V)W,X)) - g(R(U,\nabla_Y V)W,X)) - g(R(U,V)(\nabla_Y W),X)) - g(R(U,V)W,\nabla_Y W)) .$$

In most other books, $(\nabla R)(U, V, W, X, Y)$ means $(\nabla_U R)(V, W, X, Y)$.]

- (5) {From [dC, exercise 8 & 9 of ch.3]} On a Riemannian manifold (M, g), introduce the following notions.
 - For a smooth function $f: M \to \mathbb{R}$, its gradient, ∇f , is the vector field defined by

 $g(\nabla f, X) = X(f)$ for any vector field X.

- For a vector field V, its *divergence*, div V, is the smooth function defined to be the trace of the linear map $X \mapsto \nabla_X V$.
- For a smooth function f, its Laplacian, Δf , is the smooth function div (∇f) .

You are asked to work out these notions in terms of a local coordinate system $\{x^j\}$. Denote the coefficients of the metric by g_{ij} .

- (a) Write ∇f as $a^j \frac{\partial}{\partial x^j}$; find out a^j .
- (b) For a vector field $V = v^j \frac{\partial}{\partial x^j}$; find out div V.
- (c) Combine part (a) and (b) to write down the expression of Δf in local coordinate.