DIFFERENTIAL GEOMETRY II HOMEWORK 2

DUE: WEDNESDAY, MARCH 18

(1) Let G be a Lie group, and g be a left-invariant metric on G. Suppose that X, Y, Z, W are left-invariant vector fields on G. Prove the following formulae.
(a) The Levi-Civita connection is given by

$$
g\left(\nabla_{X} Y, Z\right)=\frac{1}{2}(g([X, Y], Z)-g([X, Z], Y)-g([Y, Z], X)) .
$$

(b) The Riemann curvature tensor is given by

$$
g(R(X, Y) Z, W)=g\left(\nabla_{X} Z, \nabla_{Y} W\right)-g\left(\nabla_{Y} Z, \nabla_{X} W\right)-g\left(\nabla_{[X, Y]} Z, W\right) .
$$

(2) Let (M, g) be a Riemannian manifold, and V be a vector field on M. It is called a Killing vector field if it preserves the metric, i.e. $L_{V} g=0$. Equivalently, the one-parameter family of diffeomorphism generated by V is an isometry.
(a) Show that V is a Killing vector field if and only if

$$
g\left(\nabla_{X} V, Y\right)+g\left(X, \nabla_{Y} V\right)=0
$$

for any X, Y. [Hint: Remember that $\left(L_{V} g\right)(X, Y)$ is defined by the Leibniz rule, and is equal to $V(g(X, Y))-g\left(L_{V} X, Y\right)-g\left(X, L_{V} Y\right)$.]
(b) Let $\gamma(t):(-\epsilon, \epsilon) \rightarrow M$ be a geodesic. Prove that $g\left(V, \gamma^{\prime}\right)$ is a constant (along γ) if V is a Killing vector field.
(c) Let $\gamma(t):(-\epsilon, \epsilon) \rightarrow M$ be a geodesic. Prove that the restriction of V along γ is a Jacobi field if V is a Killing vector field. [Hint: Instead of checking the Jacobi field equation, there is a more geometric reason.]
(3) Let (M, g) be a Riemannian manifold whose sectional curvature is greater than 1. Suppose that $\gamma(t):[0,1] \rightarrow M$ is a smooth curve with unit speed, and $V(t)$ is a nonzero parallel vector field along γ. For $s \in(-\epsilon, \epsilon)$, consider the curve $\gamma_{s}(t):[0,1] \rightarrow M$ defined by $\exp _{\gamma(t)}(s V(t))$. For s sufficient small, compare the length of $\gamma_{s}(t)$ and $\gamma(t)$. Explain your answer. [Hint: For any $t_{0} \in[0,1]$. Consider the vector field $\left.\frac{\partial}{\partial t}\right|_{t=t_{0}} \gamma_{s}$ along the s-curve $\gamma_{s}\left(t_{0}\right)$.]
(4) Given a covariant derivative ∇ on a vector bundle E, it naturally induces a covariant derivative on its algebraic constructions: $\otimes^{k} E, \operatorname{End}(E, E)$, etc. The basic principle is the Leibniz rule.

Let (M, g) be a Riemannian manifold, and let ∇ be the Levi-Civita connection.
(a) Show that g is a parallel section of $\operatorname{Hom}(T M \otimes T M, T M)$. It is usually denoted by $\nabla g=0 . \quad$ [Hint: The hint of (2.a) would also help you here.]
(b) Let $\left\{e_{j}\right\}$ is a local orthonormal frame. Denote by ω_{j}^{k} the coefficient 1-forms of the LeviCivita connection in terms of $\left\{e_{j}\right\}$, i.e. $\nabla e_{j}=\omega_{j}^{k} e_{k}$. Let $\left\{\omega^{j}\right\}$ be the dual coframe of $\left\{e_{j}\right\}$. Find out $\nabla \omega^{j}$. Note that $\nabla \omega^{j}$ is a section of $T^{*} M \otimes T^{*} M$. [Remark: In fact, the skew-symmetrization of $\nabla \omega^{j}$ is $\mathrm{d} \omega^{j}$.]
(c) (continued from part (a) and (b)) Then, the metric g is $\sum_{j} \omega^{j} \otimes \omega^{j}$. Use your result of part (b) to re-do part (a).

