DIFFERENTIAL GEOMETRY II HOMEWORK 1

DUE: WEDNESDAY, MARCH 11

(1) Consider the Poincaré disk model of the hyperbolic geometry:

$$
g=\frac{4}{\left(1-\sum_{j=1}^{n}\left(x^{j}\right)^{2}\right)^{2}} \sum_{j=1}^{n} \mathrm{~d} x^{j} \otimes \mathrm{~d} x^{j}
$$

on $D=\left\{\left(x^{1}, \cdots, x^{n}\right) \in \mathbb{R}^{n} \mid \sum_{j=1}^{n}\left(x^{j}\right)^{2}<1\right\}$.
(a) Calculate its Levi-Civita connection.
(b) Describe its Riemann curvature tensor, as a section of $\Lambda^{2} T^{*} D \otimes \operatorname{End}(T D)$.

You are suggested to do it by the method of moving frame.
(2) Consider the metric

$$
g=A(r)^{2} \mathrm{~d} r \otimes \mathrm{~d} r+r^{2} \mathrm{~d} \phi \otimes \mathrm{~d} \phi+r^{2} \sin ^{2} \phi \mathrm{~d} \theta \otimes \mathrm{~d} \theta
$$

on $M=I \times \mathbf{S}^{2}$. Here, r is the coordinate on the interval I, and (ϕ, θ) is the spherical coordinate on \mathbf{S}^{2}.
(a) Calculate its Levi-Civita connection.
(b) Describe its Riemann curvature tensor, as a section of $\Lambda^{2} T^{*} M \otimes \operatorname{End}(T M)$.
(3) $\{$ From $[\mathrm{dC}, \mathrm{p} .46]\}$ Prove that the isometries of $\mathbf{S}^{n} \subset \mathbb{R}^{n+1}$ with the induced metric, are the restrictions to \mathbf{S}^{n} of $\mathrm{O}(n+1)$. [Hint: Let $f: \mathbf{S}^{n} \rightarrow \mathbf{S}^{n}$ be an isometry. Consider $F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}$ which sends $\mathbf{x} \neq 0$ to $|\mathbf{x}| f(\mathbf{x} /|\mathbf{x}|)$ and sends 0 to 0 .]
(4) $\{$ From $[\mathrm{dC}, \mathrm{p} .57]\}$ Let (\bar{M}, \bar{g}) be a Riemannian manifold, and denote its Levi-Civita connection by $\bar{\nabla}$. Suppose that M is a submanifold of \bar{M}. Then \bar{g} restricts to a Riemannian metric g on M. For any two (locally defined) smooth vector fields X, Y on M, consider the following construction.

First, extend X, Y to smooth vector fields on an open set $U \subset \bar{M}$, and denote the extension by \bar{X}, \bar{Y}. For any $p \in M \cap U$, define $\left.\left(\nabla_{X} Y\right)\right|_{p}=\left.\operatorname{pr}\left(\bar{\nabla}_{\bar{X}} \bar{Y}\right)\right|_{p}$. Here, pr is the projection from $T_{p} \bar{M}=T_{p} M \oplus N_{p}$ onto the first summand, where N_{p} is the normal bundle of M in \bar{M} at p. Prove that ∇ is the Levi-Civita connection of (M, g). [Hint: The Levi-Civita connection is characterized uniquely by two properties.]
(5) Given a Riemannian metric $g=\sum_{i, j} g_{i j}(\mathbf{x}) \mathrm{d} x^{i} \otimes \mathrm{~d} x^{j}$, consider its Riemann curvature tensor

$$
\begin{aligned}
R\left(\frac{\partial}{\partial x^{k}}, \frac{\partial}{\partial x^{\ell}} \frac{\partial}{\partial x^{i}}\right. & =\nabla_{\frac{\partial}{\partial x^{k}}} \nabla_{\frac{\partial}{\partial x^{\ell}}} \frac{\partial}{\partial x^{i}}-\nabla_{\frac{\partial}{\partial x^{\ell}}} \nabla_{\frac{\partial}{\partial x^{k}}} \frac{\partial}{\partial x^{i}}-\nabla_{\left[\frac{\partial}{\partial x^{k}}, \frac{\partial}{x^{\ell}}\right]} \frac{\partial}{\partial x^{i}} \\
& =\sum_{j} R_{i k \ell}^{j} \frac{\partial}{\partial x^{j}} .
\end{aligned}
$$

Work out the expression of $R_{i k \ell}^{j}$ in terms of the Christoffel symbols and their derivatives.

