
COMPLEX ANALYSIS

MIDTERM

THURSDAY, NOVEMBER 12

(1) [8 points] True/False questions, no justifications needed.

(a) Let Ĉ = C ∪ {∞}. There exists a rational function q(z) such that #{q−1(0)} = 2 and

#{q−1(∞)} = 0 (regard q(z) as a map from Ĉ to Ĉ, and count zeros with multiplicity).

F As a consequence of the fundamental theorem of algebra, #{q−1(u)} is the same

for any u ∈ Ĉ.

(b) There exists an analytic function f(z) defined on {z ∈ C | |z| < 2} such that f (k)(0) = 1

for any k ≥ 0.

T f(z) = exp(z) does the job.

Originally, I planned have the following function f(z) = 1/(1− z), which has coefficient

1 but f (k)(0) = k!.

(By Abel’s theorem, the power series has radius of convergence 1, and
∑

k≥0 z
k defined

an analytic function for |z| < 1.) The function 1/(1− z) has that property. Since an

analytic function is determined by its value and all the derivatives at one point, the

function must be 1/(1− z), which cannot be analytic on {z ∈ C | |z| < 2}

(c) Consider the function f(z) = cosh
1

z
. There exist positive constants ε and M so that

|f(z)| > M for any 0 < |z| < ε.

F The point z = 0 is an essential singularity. The image of any small neighborhood

is always dense in C.

(d) Let D = {z ∈ C | |z| < 1}. Suppose that f : D → D is analytic with f(0) = 0. Then,

|f(z)| ≤ |z| for any z ∈ D.

T This is Schwarz lemma.

(e) There does not exist an entire function whose value on the positive real axis is
∫∞
0 e−ttz−1dt.

T If the function exists, it coincides with the gamma function Γ(z) on the positive

real axis, which is not discrete. Therefore, the function must be Γ(z) (or coincides with

Γ(z) except on the poles of Γ(z)), but such a function cannot be analytic everywhere.
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(f) There does not exist an entire function whose value on n ∈ N is (n− 1)!.

F The condition is on a discrete set. One can construct such a function by modifying

the Weiestrass product construction, see [Ahlfors, #1 of p.197]

(g) There exists a meromorphic function whose pole is exactly n ∈ N with the singular

part

n∑
k=1

exp(2k)

(z − n)k
.

T It follows directly from the theorem of Mittag-Leffler. The singular part does not

matter.

(h) Let B be the set of entire functions functions with f(0) = 1 and |f(z)| ≤ 999 when

|z| = 100. For any n ∈ N, there always exists f(z) ∈ B which has exactly n zeros in

{z ∈ C | |z| < 50}.

F Jensen’s formula gives a bound for the number of zeros.

(2) [5 points] Suppose that f(z) is an entire function obeying |f(z)| ≤ n
3
4 when |z| = n ∈ N.

Prove that f(z) is a constant function. (Hint: There are many ways to do it. You can

show that f (k)(0) = 0 for any k ∈ N, or f(z1) = f(z2) for any z1, z2 ∈ C, etc.)

[method 1] It follows from the Cauchy integral formula that

f (k)(0) =
k!

2πi

∫
|z|=n

f(z)

zk+1
dz for any n ∈ N ,

and then

|f (k)(0)| ≤ k!
n

3
4

nk+1
n .

It is clear that the right hand side tends to zero as n → ∞ for any fixed k ≥ 1. Thus,

f (k)(0) = 0 for any k ≥ 1, and f(z) must be a constant function.

[method 2] Given any z1, z2 ∈ C, consider n ∈ N so that n is greater than 2|z1|, 2|z2|. By

Cauchy integral formula

f(z1)− f(z2) =
1

2πi

∫
|z|=n

(
1

z − z1
− 1

z − z2

)
f(z)dz

⇒ |f(z1)− f(z2)| ≤
1

2π

(
2

n

2

n
|z1 − z2|

)
n

3
4 (2πn) .

It is clear that the right hand side tends to zero as n → ∞. Hence, f(z1) = f(z2) for any

z1, z2 ∈ C.

2



(3) [5 points] How many roots does the equation z2015 + 2z304 + 11z12 + z4 + z3 + z2 + z+ 1 = 0

have in {z ∈ C | |z| < 1}? Justify your answer.

We apply Rouché’s theorem. Let f(z) = z2015 + 2z304 + 11z12 + z4 + z3 + z2 + z + 1 and

g(z) = 11z12. By the triangle inequality,

|f(z)− g(z)| ≤ 8 < |g(z)| when |z| = 1 .

Hence, f(z) and g(z) have the same number of roots in the unit disk, and there are 12

roots.

(4) [6 points] Evaluate the integral∫ ∞
−∞

eax

1 + ex
dx for 0 < a < 1 .

(Hint: ez has a period of 2πi.)

Let RM = {z = x + iy ∈ C | −M ≤ x ≤ M, 0 ≤ y ≤ 2π}. The function f(z) = eaz

1+ez

has only one pole in the region RM . It is at z = πi with residue −eπai. It follows that∫
∂RM

f(z)dz = −2πieπai. It is not hard to show that

lim
M→∞

∫
∂RM

f(z)dz =

∫ ∞
−∞

eax

1 + ex
dx−

∫ ∞
−∞

e2πaieax

1 + ex
dx = (1− e2πai)

∫ ∞
−∞

eax

1 + ex
dx .

Then, ∫ ∞
−∞

eax

1 + ex
dx =

−2πieπai

1− e2πai
=

2πi

eπai − e−πai
=

π

sin(πa)
.

(5) [6 = 2 + 4 points] Consider the function

f(z) =
e2πz − 1

z
.

(a) Show that z = 0 is a removable singularity, and determine f(0).

Since limz→0 |z| |f(z)| = 0, z = 0 is a removable singularity. Its value is

lim
z→0

e2πz − 1

z
= 2π

∂

∂w

∣∣
w=0

ew = 2π .

(b) Construct the Weierstrass product development of f(z), and find its genus. You shall

briefly explain the convergence of your expression. You can simply invoke the theorem

of Weierstrass, or derive the estimate by hand.

(Hint: You may need the following formula:

2πe2πz

e2πz − 1
= π +

1

z
+
∑
n6=0

(
1

z − in
+

1

in
) .)
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The zeros of f(z) are nonzero integers, each one is of order 1. Since
∑

n6=0

(
1
|n|

)h+1

diverges for h = 0 and converges for h = 1, the canonical product is∏
n6=0

(1− z

in
) exp(

z

in
) .

The function f(z) shall be

eg(z)
∏
n6=0

(1− z

in
) exp(

z

in
)

for some entire function g(z). The log-derivative reads

2πe2πz

e2πz − 1
− 1

z
= g′(z) +

∑
n6=0

z

in(z − in)
.

By combining it with the hint, we find that g′(z) = π and g(z) = πz + c0. The constant c0

can be found by evaluating at z = 0, and c0 = log 2π. It follows that f(z) has genus 1.

(6) [4 points] Let f(z) be a non-constant entire function of finite order. Prove that the image

of f can miss at most one value in C. (Hint: You may assume f misses α and β. What

can you say about the entire function f(z) − α? Could it be possible that f(z) − α never

equals to β − α?)

Consider the function f(z)−α. It is of the same order as f(z). (This can be seen by using

the equivalent condition that for any ε > 0, |f(z)| ≤ exp(|z|λ+ε) for |z| being sufficiently

large.) We know f(z)−α is a nowhere zero entire function, and thus can be written as eg(z)

for another entire function g(z). By Hadamard’s theorem, g must be a polynomial, and its

degree is the maximal integer no greater than the order of f .

But the fundamental theorem of algebra implies that g assumes every value, in particular

log(β − α) (the branch does not matter here). Thus, f cannot miss the value β.

In fact, it is true for any non-constant entire function. It is known as the Little Picard

Theorem: the image of a non-constant entire function is either C or C minus a point.
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