COMPLEX ANALYSIS HOMEWORK 13

DUE: TUESDAY, DECEMBER 29

(1) Let Ω be an open, connected and bounded region in $\mathbb C$ whose boundary consists of smooth curves. The Green's theorem says that

$$
\iint_{\Omega} (q_x - p_y) \, dx \, dy = \int_{\partial \Omega} p \, dx + q \, dy \; .
$$

for $p, q \in C^2(\overline{\Omega})$.

(a) Prove Green's first identity:

$$
\iint_{\Omega} (v\Delta u + \nabla u \cdot \nabla v) \,dx \,dy = \int_{\partial \Omega} v \frac{\partial u}{\partial n} ds
$$

where *n* is the unit outer normal, and *s* is the arc-length parameter for $\partial\Omega$.

(b) Prove Green's second identity:

$$
\iint_{\Omega} (v \Delta u - u \Delta v) \,dx \,dy = \int_{\partial \Omega} \left(v \frac{\partial u}{\partial n} - u \frac{\partial v}{\partial n} \right) ds.
$$

(2) Consider a multiply-connected region as shown in the picture. Assume there are more than three boundary components, and each boundary curve C_j is the image of the unit circle under some conformal map (defined on a open neighborhood of the unit circle). Let $w_i(z)$ be the harmonic function with the boundary value $w_j(z) = 1$ when $z \in C_j$ and $w_j(z) = 0$ for $z \in C_{k \neq j}$.

By the reflection principle, the functions $w_i(z)$ can be regarded as harmonic functions defined on $\overline{\Omega}$. As explained in class, let $\lambda_1, \lambda_2, \ldots, \lambda_{n-1}$ be the unique solution to the equations

$$
\sum_{j=1}^{n-1} \lambda_j \int_{C_k} \frac{\partial w_j}{\partial n} ds = \begin{cases} 2\pi & \text{for } k = 1, \\ -2\pi & \text{for } k = n, \\ 0 & \text{for } 1 < k < n. \end{cases}
$$

Then, set $u(z)$ to be $\sum_{j=1}^{n-1} \lambda_j w_j(w)$, and $v(z)$ to be its conjugate harmonic. Namely, $v(z)$ is a multiple-valued function given by the line integral of $-u_y dx + u_x dy$. By construction, $F = \exp(u + iv)$ is a well-defined analytic function on $\overline{\Omega}$.

(a) Show that

$$
\int_{C_j} \frac{\partial w_k}{\partial n} \mathrm{d}s = \int_{C_k} \frac{\partial w_j}{\partial n} \mathrm{d}s
$$

for any $j, k \in \{1, ..., n-1\}.$

(b) Show that

$$
\frac{1}{2\pi i} \int_{C_1} \frac{F'(z)}{F(z) - w_0} dz = \begin{cases} 1 & \text{when } |w_0| < e^{\lambda_1} ,\\ \frac{1}{2} & \text{when } |w_0| = e^{\lambda_1} ,\\ 0 & \text{when } |w_0| > e^{\lambda_1} . \end{cases}
$$

(c) Show that

$$
\frac{1}{2\pi i} \int_{C_n} \frac{F'(z)}{F(z) - w_0} dz = \begin{cases} -1 & \text{when } |w_0| < 1 ,\\ -\frac{1}{2} & \text{when } |w_0| = 1 ,\\ 0 & \text{when } |w_0| > 1 . \end{cases}
$$

(d) Show that

$$
\frac{1}{2\pi i}\int_{C_k}\frac{F'(z)}{F(z)-w_0}\mathrm{d}z=0
$$

for $k \in \{2, ..., n-1\}$ and any w_0 .

With these items, it follows that $1 < \lambda_1$ and

$$
\frac{1}{2\pi i} \sum_{k=1}^{n} \int_{C_k} \frac{F'(z)}{F(z) - w_0} dz = \begin{cases} \frac{1}{2} & \text{when } |z| = 1 \text{ or } e^{\lambda_1} ,\\ 1 & \text{when } 1 < |z| < e^{\lambda_1} ,\\ 0 & \text{otherwise.} \end{cases}
$$

Then one can figure out the image of $F(z)$ by the argument principle and the construction of F.

(3) (a) Show that the function $z \mapsto z + \frac{1}{z}$ $\frac{1}{z}$ defines a conformal equivalence between the region outside the unit circle onto the plane from which the segment [−2, 2] has been deleted.

- (b) What is the image of the unit circle under this mapping? Use polar coordinates.
- (c) In polar coordinates, if $w = z + \frac{1}{z} = u + iv$, then

$$
u = \left(r + \frac{1}{r}\right)\cos\theta
$$
 and $v = \left(r - \frac{1}{r}\right)\sin\theta$.

Show that the circle $r = c$ with $c > 1$ maps to an ellipse with major axis $c + \frac{1}{c}$ $\frac{1}{c}$ and minor axis $c - \frac{1}{c}$ $\frac{1}{c}$. Show that the radial lines $\theta = c$ map onto quarters of hyperbolas.