COMPLEX ANALYSIS HOMEWORK 12

DUE: TUESDAY, DECEMBER 22

(1) Let $f(z)$ be an entire function with

$$
\lim_{z \to \infty} \frac{\text{Re } f(z)}{z} = 0 \; .
$$

Show that $f(z)$ is a constant function. You may need (66) on p.168 of Ahlfors.

- (2) Let $f(z)$ be an analytic function on $\{z \in \mathbb{C} \mid |z| > M\}$ for some $M >> 1$.
	- (a) Show that $f(z) = f_1(z) + f_2(z)$ where $\lim_{z\to\infty} f_1(z) = 0$ and $f_2(z)$ is an entire function. You will need the Cauchy integral formula, and the proof of the Laurent series expansion might help you.
	- (b) Suppose that

$$
\lim_{z \to \infty} \frac{\text{Re } f(z)}{z} = 0
$$

Show that $\lim_{z\to\infty} f(z)$ exists.

- (3) Suppose that $u(z)$ is a harmonic function on $\Omega = \{z \in \mathbb{C} \mid 0 < |z| < 1\}$ with $\lim_{z\to 0} z u(z) =$ 0.
	- (a) Prove that $\frac{1}{2\pi} \int_0^{2\pi} u(re^{i\theta}) d\theta$ is a linear function of log r. Namely, there exists constants α and β such that $\frac{1}{2\pi} \int_0^{2\pi} u(re^{i\theta}) d\theta = \alpha \log r + \beta$.
	- (b) Prove that $u(z) = \alpha \log |z| + u_0(z)$ for some harmonic function $u_0(z)$ on D. At least, $u_0(z)$ is analytic on Ω , you can start by showing that it is the real part of an analytic function on Ω , and then prove that 0 is a removable singularity.
- (4) Consider $\Omega = \{z \in \mathbb{C} \mid 0 < |z| < 1\}$. Let $f(\zeta) = 0$ for $|\zeta| = 1$ and $f(0) = 1$. Explain that the Dirichlet problem on Ω with boundary condition $f(\zeta)$ has no solution.
- (5) Let Ω be an open and connected subset of \mathbb{C} , and $u(z)$ is a \mathcal{C}^2 function on Ω . Suppose that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \ge 0$. Show that u is subharmonic.
- (6) [Bonus] Let $u(z)$ be a harmonic function on $\{z \in \mathbb{C} \mid a < |z| < 1\}$ for some $a \in (0,1)$ with $\lim_{z\to\zeta}u(z)=0$ for any $|\zeta|=1$. Prove that $u(z)$ can be extended across $|\zeta|=1$ as a harmonic function.