COMPLEX ANALYSIS HOMEWORK 11

DUE: TUESDAY, DECEMBER 15

(1) Let k be a real number with 0 < k < 1. Consider the following conformal map from \mathbb{H} to a rectangle:

$$g(w) = \int_0^w \frac{\mathrm{d}u}{\sqrt{(1-u^2)(1-k^2u^2)}}$$

Let

$$K = \int_{-1}^{1} \frac{\mathrm{d}t}{\sqrt{(1-t^2)(1-k^2t^2)}} ,$$

$$K' = \int_{1}^{\frac{1}{k}} \frac{\mathrm{d}t}{\sqrt{(t^2-1)(1-k^2t^2)}} .$$

As explained in [A, p.240], the image of g is the rectangle R_0 with vertex K/2, -K/2, -K/2+iK' and K/2+iK'. By applying the Schwarz reflection principle, the inverse map $f: R \to \mathbb{H}$ can be extended to a doubly periodic meromorphic function on \mathbb{C} , with period 2K and 2K'.

- (a) Prove that $g(\infty) = iK'$.
- (b) Show that K = K' if and only if $k = (\sqrt{2} 1)^2$.
- (c) Show that f(z), f(z + K) and f(z + K') are odd functions of z; f(z + K/2) and f(z + K/2 + K'/2) are even functions.
- (2) Show that the conformal mapping of the unit disk onto a parallel strip, $\{z \in \mathbb{C} \mid 0 < \text{Im } z < \pi i\}$, or onto a half strip with two right angles, $\{z \in \mathbb{C} \mid 0 < \text{Im } z < \pi i , \text{Re } z > 0\}$, can be obtained as special cases of the Schwarz-Christoffel formula.
- (3) For any r > 1, denote the annulus $\{z \in \mathbb{C} \mid 1 < |z| < r\}$ by A_r . Prove that A_{r_1} is conformally equivalent to A_{r_2} if and only if $r_1 = r_2$. You may try to apply the Schwarz reflection principle consecutively to obtain a map from $\mathbb{C} \setminus \{0\}$ to itself.
- (4) Given any three distinct points on ∂D , w_1, w_2 and w_3 , show that there exists a map $f \in Aut(D)$ such that $f(w_1) = 1$, $f(w_2) = i$ and $f(w_3) = -1$. (Assume w_1, w_2 and w_3 are in a counterclockwise order.)