COMPLEX ANALYSIS HOMEWORK 10

DUE: TUESDAY, DECEMBER 8

- (1) Let Ω and Ω' be open and connected sets in \mathbb{C} . Let $f : \Omega \to \Omega'$ be bijective and continuous. Moreover, $f^{-1} : \Omega' \to \Omega$ is also continuous. (Namely, f is a homeomorphism.) Let $\{z_n\}$ be a sequence in Ω which converges to a point $z \in \partial \Omega$. Suppose that $w = \lim_{n \to \infty} f(z_n)$ exists. Prove that $w \in \partial \Omega'$. (It suffices to show that $w \notin \Omega'$.)
- (2) (a) Let Ω ⊂ C be an open and connected set, and p is a point in Ω. Suppose that f is an analytic function on Ω\{p} whose image Ω' = f(Ω\{p}) is bounded. Show that f has a removable singularity at p. Moreover, if f is injective, show that f(p) ∈ ∂Ω'.
 - (b) Let $\Omega_{r,R} = \{z \in \mathbb{C} \mid r < |z| < R\}$. Prove that $\Omega_{0,1}$ is not conformally equivalent to $\Omega_{r,R}$ for any 0 < r < R.
- (3) Let $\Omega \subset \mathbb{C}$ be a simply connected open set such that $\Omega \neq \mathbb{C}$ and $\overline{z} \in \Omega$ for any $z \in \Omega$. Let a be a point in $\Omega \cap \mathbb{R}$. Suppose that f is the unique bijective analytic map from Ω to D with f(a) = 0 and f'(a) > 0. Let $\Omega_+ = \{z \in \Omega \mid \text{Im } z > 0\}$. Show that $f(\Omega_+)$ must lie entirely above or below the real axis.
- (4) Let s be a real number within [0,1). Let U_s be the open set obtained from deleting the segment [s,1) from D. Construct a conformal equivalence from U_s to D. You may use the following strategy.
 - (a) Construct a conformal equivalence from U_s to U_0 .
 - (b) Construct a conformal equivalence from U_0 to $\{z \in D \mid \text{Im } z > 0\}$.
 - (c) Construct a conformal equivalence from $\{z \in D \mid \text{Im} z > 0\}$ to $\{z \in \mathbb{C} \mid \text{Re} z > 0 \text{ and } \text{Im} z > 0\}$.
- (5) Let Ω be the set $\{z \in \mathbb{C} \mid 0 < \operatorname{Re} z < \frac{\pi}{2} \text{ and } \operatorname{Im} z > 0\}$. Construct a conformal equivalence from Ω to D.