COMPLEX ANALYSIS HOMEWORK 9

- (1) The main purpose of this exercise is to understand the automorphism of \mathbb{C} , $\operatorname{Aut}(\mathbb{C})$. Namely, $f: \mathbb{C} \to \mathbb{C}$ is bijective and analytic, and f^{-1} is also analytic.
 - (a) Suppose that g(z) is an entire function function such that ∞ is not an essential singularity. That is to say, w = 0 is not an essential singularity of g(1/w). Show that g(z) must be a polynomial.
 - (b) Let $f \in Aut(\mathbb{C})$, prove that ∞ cannot be an essential singularity of f.
 - (c) Characterize $\operatorname{Aut}(\mathbb{C})$.
- (2) The main purpose of this exercise is to understand the automorphism of the Riemann sphere, $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$.
 - (a) For any $T \in GL(2; \mathbb{C})$ (invertible 2×2 matrices), it is not hard to see that its Möbius transform belong to $Aut(\hat{\mathbb{C}})$.

$$T = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \Rightarrow \quad \mu(T)(z) = \frac{az+b}{cz+d}$$

Check that $\mu(TT') = \mu(T) \circ \mu(T')$. It follows that $\mu(T^{-1})$ is the inverse map of $\mu(T)$.

- (b) Show that $\mu(T) = \mu(T')$ if and only if T = sT' for some $s \in \mathbb{C}$. Therefore, $\mathrm{PGL}(2;\mathbb{C}) = \mathrm{GL}(2;\mathbb{C})/\{s\mathbf{I}\}$ is a subgroup of $\mathrm{Aut}(\hat{\mathbb{C}})$. Here, \mathbf{I} is the 2×2 identity matrix.
- (c) For any $p \in \mathbb{C}$, show that there exists $T \in GL(2; \mathbb{C})$ such that $\mu(T)(p) = \infty$.
- (d) Use Part (c) and Exercise (1) to conclude that $\operatorname{Aut}(\hat{\mathbb{C}}) = \operatorname{PGL}(2;\mathbb{C})$.
- (e) Given any three distinct points $z_0, z_1, z_2 \in \hat{\mathbb{C}}$, prove that there exists a unique element in $f \in \operatorname{Aut}(\hat{\mathbb{C}})$ such that $f(0) = z_0$, $f(1) = z_1$ and $f(\infty) = z_2$.
- (3) Given a function $F : \hat{\mathbb{C}} \to \mathbb{C}$, define two functions on \mathbb{C} as follows

$$\begin{split} f_0(z) &= F(z) \ , \\ f_1(w) &= F(1/w) \ \text{ for } w \neq 0 \quad \text{and} \quad f_1(0) = F(\infty) \ . \end{split}$$

- (a) A function $F : \hat{\mathbb{C}} \to \mathbb{C}$ is said to be holomorphic if both f_0 and f_1 are analytic functions on \mathbb{C} . Prove that a holomorphic function F must be a constant.
- (b) A function $F : \hat{\mathbb{C}} \to \mathbb{C}$ (with isolated singularities) is said to meromorphic if both f_0 and f_1 are meromorphic functions on \mathbb{C} . A point $z \in \mathbb{C} \subset \hat{\mathbb{C}}$ is said to be a zero (or a pole) of F if it is a zero (or a pole) of f_1 , and the order is defined to be that of f_0 . For $\infty \in \hat{\mathbb{C}}$, it is a zero (or a pole) of F if 0 is a zero (or a pole) of f_1 . Its order is defined by the same way.

Let $F: \hat{\mathbb{C}} \to \mathbb{C}$ be a meromorphic function. Given any $p \in \hat{\mathbb{C}}$, we say

$$(F) + p \ge 0$$

if F is holomorphic, or holomorphic except at p which is a pole of F of order 1. For any fixed $p \in \hat{\mathbb{C}}$, characterize all such F.

- (c) Discuss the general case of Part (b). Namely, given any finite number of points $\{p_n\}_{n=1}^N \in \hat{\mathbb{C}}$, define $(F) + \sum_{n=1}^N p_n$ analogously, and characterize those functions. Note that p_n 's could be the same.
- (d) For a meromophic function $F : \hat{\mathbb{C}} \to \mathbb{C}$, what can you say about the total number of zeros and the total number of poles?