COMPLEX ANALYSIS HOMEWORK 8

DUE: TUESDAY, DECEMBER 1

In what follows, Ω is an open and connected subset of \mathbb{C} , and $\mathcal{H}(\Omega)$ is the space of analytic function on Ω . In what follows, the convergence of functions means that they converge uniformly on any compact subset of Ω .

- (1) Let D be the unit disk, $\{z \in \mathbb{C} \mid |z| < 1\}$. Show that a sequence $\{f_n\} \subset \mathcal{H}(D)$ converges to f if and only if $\int_{|z|=\rho} |f(z) f_n(z)| |dz| \to 0$ as $n \to \infty$ for $0 < \rho < 1$.
- (2) Let $\{f_n\} \subset \mathcal{H}(\Omega)$ be a sequence of *injective* functions which converges to $f \in \mathcal{H}(\Omega)$. Show that f is either injective or a constant function.
- (3) Suppose that $\{f_n\} \subset \mathcal{H}(\Omega)$ converges to a non-constant $f \in \mathcal{H}(\Omega)$. Let $z \in \Omega$ and $\alpha = f(z)$. Show that there is a sequence $\{z_n\} \in \Omega$ such that

 $\lim_{n \to \infty} z_n = z \quad \text{and} \quad f_n(z_n) = \alpha \quad \text{for } n \text{ being sufficiently large }.$

(4) (a) Let f be an analytic function defined on some open set containing $\overline{B(z_0;\rho)}$. Show that

$$|f(z_0)|^2 \le \frac{1}{\pi\rho^2} \int_0^{2\pi} \int_0^{\rho} |f(z_0 + re^{i\theta})|^2 r \mathrm{d}r \mathrm{d}\theta .$$

- (b) Given any M > 0, let $\mathcal{F}_M = \{ f \in \mathcal{H}(\Omega) \mid \iint_{\Omega} |f(z)|^2 dx dy \leq M \}$. Prove that \mathcal{F}_M is normal.
- (5) Given an entire function f, consider $\mathcal{F} = \{f(kz) \mid k \text{ is a constant}\}$. Let Ω be an annulus $\{z \in \mathbb{C} \mid \rho_1 < |z| < \rho_2\}$, and regard \mathcal{F} as a subset of $\mathcal{M}(\Omega) \subset \mathcal{C}(\Omega; \hat{\mathbb{C}})$ (by restriction). Show that $\mathcal{F} \subset \mathcal{M}(\Omega)$ is normal if and only if f is a polynomial. Here, $\mathcal{M}(\Omega)$ is the space of all meromorphic functions on Ω . The convergence here is measured by the norm of the stereographic projection.