COMPLEX ANALYSIS HOMEWORK 4

DUE: TUESDAY, OCTOBER 13

- (1) Each of the following functions f has an isolated singularity at z = 0. Determine its nature; if it is a removable singularity, define f(0) so that f is analytic at z = 0; if it is a pole, find the singular part.
 - (a) $f(z) = \frac{\sin z}{z}$; (b) $f(z) = \frac{\cos z}{z}$; (c) $f(z) = \frac{\cos z - 1}{z}$; (d) $f(z) = \frac{z^2 + 1}{z(z - 1)}$; (e) $f(z) = \frac{\cos(z^{-1})}{z^{-1}}$.
- (2) Give the Laurent series expansion of

$$f(z) = \frac{1}{(z^2 + 1)(z^2 - 4)}$$

on the annulus of radius between 1 and 2. (You may start with its partial fraction.)

- (3) [p.186, #4]: You are asked to determine its singular part, and to show that there is no z^{2k} -components in the Taylor series of its regular part, and then to calculate the first three coefficients.
- (4) The following exercise is based on [p.136, $\#1 \sim \#5$]. Let $D = \{z \in \mathbb{C} \mid |z| < 1\}$ be the unit disk. For any $a \in D$, let

$$\varphi_a(z) = \frac{z-a}{1-\bar{a}z} \; .$$

You can check easily that φ_a defines an automorphism¹ of *D*. In fact, the inverse of φ_a is φ_{-a} .

- Check that $\varphi_a(\partial D) = \partial D$.
- Suppose that $|f(z)| \leq 1$ for $|z| \leq 1$. Prove that

$$|f'(a)| \le \frac{1 - |f(a)|^2}{1 - |a|^2}$$

¹Namely, it is analytic and bijective, and the inverse map is also analytic.

for any $a \in D$. When will the equality hold? (You may consider $g = \varphi_{f(a)} \circ f \circ \varphi_{-a}$.)

• Suppose that f is an automorphism of D, and f(a) = 0. Show that $f = c \varphi_a$ for some constant c with |c| = 1. (Let h be the inverse of f. Compute the derivative of $h \circ f = z$ at a.)

You can think about what happens for the upper half plane, $\{z \in \mathbb{C} \mid \operatorname{Im} z > 0\}$.

- (5) Does there exist an analytic function $f: D \to D$ with $f(\frac{1}{2}) = \frac{3}{4}$ and $f'(\frac{1}{2}) = \frac{2}{3}$?
- (6) Is there an analytic function $f: D \to D$ with $f(0) = \frac{1}{2}$ and $f'(0) = \frac{3}{4}$? If so, find such an f. Is it unique?