COMPLEX ANALYSIS FINAL

THURSDAY, JANUARY 14

[Total: 37 points] In what follows, Ω is always assumed to be an *open* and *connected proper* subset of C.

- (1) [7 points] True/False questions, no justifications needed.
	- (a) Given any three distinct complex numbers of unit length, ζ_1, ζ_2 and ζ_3 , define

$$
f(z) = \int_0^z \frac{1}{((w - \zeta_1)(w - \zeta_2)(w - \zeta_3))^{\frac{2}{3}}} dw
$$

as a function on the open unit disk. (Assume that the branch of 2/3-power is suitably chosen.) Then, we can find ζ_1, ζ_2 and ζ_3 such that the image of $f(z)$ is a right triangle.

F This is exactly the Schwarz–Christoffel formula. The image always has outer angle $2\pi/3$. In other words, the image is an equilateral triangle, and is never a right triangle.

(b) Suppose that $f(z)$ is a function on $\partial\Omega$, which is non-negative but not necessarily continuous. Let $u(z)$ be the harmonic function on Ω produced from the Perron's method with $f(z)$. Then, $u(z) \geq 0$ for any $z \in \Omega$.

T Recall that $\mathcal{B} = \{v(z) : \text{subharmonic on } \Omega \mid \limsup_{z \to \zeta} v(z) \le f(\zeta) \text{ for any } \zeta \in \mathcal{B} \}$ $\partial\Omega\}$, and $u(z) = \sup_{y\in\mathcal{B}} v(z)$. It is clear that $0 \in \mathcal{B}$. Thus, $u(z) \geq 0$.

(c) Suppose that $\partial\Omega$ is compact, and $f(z)$ is a continuous function on $\partial\Omega$. Then, there exists a harmonic function $u(z)$ on Ω , which extends continuously to $\partial\Omega$ and which is equal to $f(z)$ on $\partial\Omega$.

F Consider $\Omega = D\setminus\{0\}$ with $f(z) = 0$ for $z \in \partial D$ and $f(0) = 1$. See Homework 12 #3b.

(d) For any $\alpha < -1$, there exists an automorphism of $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$, $f(z)$, such that $f(0) = 0, f(1) = 1$ and $f(-1) = \alpha$.

 T See Homework 9 #2e.

(e) Let Ω be the region enclosed by the heart curve, $\Omega = \{x+iy \in \mathbb{C} \mid (x^2+y^2-1)^3-x^2y^3 \leq$ 0}. Suppose that $\psi(z)$ is an automorphism of Ω with $\psi(0) = 0$. Then, $\psi(z)$ must be the identity map.

 \boxed{F} By the Riemann mapping theorem, Ω is conformal equivalent to D. Moreover, we may choose the map such that 0 is sent ot 0. But $z \mapsto e^{i\theta} z$ is an automorphism of D fixing 0.

(f) Consider $\mathcal{F} = \{f_n(z) = \frac{1}{z+n}\}_{n \in \mathbb{N}}$ on \mathbb{C} . It is normal, in the sense of $\hat{\mathbb{C}}$.

T We compute

$$
\rho(f_n) = \rho(\frac{1}{f_n}) = \frac{2}{1 + |z + n|^2} \le 2.
$$

By Marty's theorem, it is normal. One can also conclude it directly.

(g) There exists a non-constant entire function $f(z)$, whose image does not contain the negative real axis.

 $\left| \frac{F}{F} \right|$ One can apply little Picard theorem. Or compose a conformal map so that the image lie in the unit disk, and apply the Liouville's theorem.

(2) [5 points] Evaluate $\sum_{n=1}^{\infty}$ $n=1$ 1 $\frac{1}{n^2}$.

Hint: The zeros of $sin(\pi z)$ are exactly \mathbb{Z} . Since

$$
\sin(\pi z) = \sin(\pi x)\cosh(\pi y) + i\cos(\pi x)\sinh(\pi y)
$$
 and

$$
\cos(\pi z) = \cos(\pi x)\cosh(\pi y) - i\sin(\pi x)\sinh(\pi y)
$$
,

it is not hard to show that

$$
\frac{1}{2}|\sin(\pi z)| \le |\cos(\pi z)| \le 2|\sin(\pi z)|
$$

when $|y| \ge 1000$. Another formula you might need is that

$$
\int_{-\infty}^{\infty} \frac{1}{a^2 + s^2} \mathrm{d}s = \frac{\pi}{a} \; .
$$

Due to the argument principle,

$$
\frac{1}{2\pi i} \int_{\gamma} g(z) \frac{f'(z)}{f(z)} dz = \sum_{w_j:\text{ zero of } f(z)} g(w_j) n(\gamma; w_j)
$$

for any analytic function $f(z)$ and $g(z)$. Consider $g(z) = \frac{1}{z^2}$ and $f(z) = \sin(\pi z)$. Let $\gamma_{n,Y}$ be the boundary of the rectangle with vertices $\pm(\frac{1}{2}+n)\pm iY$. Since $g(z)$ is not analytic at

0, the above formula shall be corrected by the residue, $\text{Res}(\frac{1}{z^2} \frac{\pi \cos(\pi z)}{\sin(\pi z)})$ $\frac{\sin(\pi z)}{\sin(\pi z)}, 0) = -\frac{\pi^2}{3}$ $\frac{7}{3}$. Then, the formula reads

$$
\frac{1}{2\pi i} \int_{\gamma_{n,Y}} \frac{1}{z^2} \frac{\pi \cos(\pi z)}{\sin(\pi z)} dz = 2 \sum_{k=1}^n \frac{1}{k^2} - \frac{\pi^2}{3}.
$$

We first consider the limit of the integral as $Y \to \infty$. For the horizontal segments of $\gamma_{n,Y}$, the integral is bounded by

$$
C_1 \int_{-(\frac{1}{2}+n)+iY}^{(\frac{1}{2}+n)+iY} \frac{1}{|z|^2} |dz| \leq C_2 \int_{-\infty}^{\infty} \frac{1}{s^2 + Y^2} ds
$$

=
$$
\frac{C_2 \pi}{Y} \xrightarrow{Y \to \infty} 0.
$$

For the vertical segments of $\gamma_{n,Y}$, the integral is bounded by

$$
C_3 \int_{(\frac{1}{2}+n)+iY}^{(\frac{1}{2}+n)+iY} \frac{1}{|z|^2} \frac{|\sinh(\pi y)|}{|\cosh(\pi y)|} |dz| \leq C_3 \int_{(\frac{1}{2}+n)-iY}^{(\frac{1}{2}+n)+iY} \frac{1}{|z|^2} |dz|
$$

= $C_3 \int_{-\infty}^{\infty} \frac{1}{(n+\frac{1}{2})^2 + s^2} ds$
= $\frac{C_3 \pi}{n+\frac{1}{2}}$.

It follows that

$$
\left| 2\sum_{k=1}^n \frac{1}{k^2} - \frac{\pi^2}{3} \right| \le \frac{C_3 \pi}{n + \frac{1}{2}}.
$$

By letting $n \to \infty$, we find that $\sum_{n=1}^{\infty} 1/n^2 = \pi^2/6$.

- (3) [2 + 5 points] Suppose that Ω is simply-connected. Fix a point $z_0 \in \Omega$. Let
	- $\mathcal{F} = \{f(z) : \text{injective and analytic on } \Omega \mid f(z_0) = 0, f'(z_0) > 0, |f(z)| < 1 \text{ for any } z \in \Omega \}$.
	- (a) Explain that $\mathcal F$ is a normal family, in the sense of $\mathbb C$.

Since $|f(z)| < 1$, Montel's theorem says that F is normal.

(b) Suppose that there exists a $g(z) \in \mathcal{F}$ such that $g'(z_0) \geq f'(z_0)$ for any $f \in \mathcal{F}$. Prove that the image of $g(z)$ is the (open) unit disk. Namely, prove the surjectivity part of the Riemann mapping theorem.

Hint: Given $a \in D$, let $\varphi_a(z) = \frac{z-a}{1-\overline{a}z}$. Then, $\varphi'_a(0) = 1 - |a|^2$ and $\varphi'_a(a) = \frac{1}{1-|a|^2}$. Another fact is that $\frac{1+|a|}{2\sqrt{|a|}}$ $\frac{|a|}{|a|} > 1$ for any $a \in D \setminus \{0\}.$

Suppose that $w_0 \in D$ does not belong to the image of $g(z)$. Consider

$$
h_1(z) = \frac{g(z) - w_0}{1 - \bar{w}_0 g(z)};\\
$$

it is injective and the image is still contained in D. Since $h_1(z)$ misses zero and Ω is simply-connected, we can consider

$$
h_2(z)=\sqrt{h_1(z)}\ .
$$

Since $h_1(z) = (h_2(z))^2$, $h_2(z)$ is also injective. Finally, we adjust the map so that it sends z_0 to 0, and the derivative is positive at z_0 . Namely, consider

$$
h_3(z) = e^{i\theta} \frac{h_2(z) - h_2(z_0)}{1 - h_2(z_0)} h_2(z) .
$$

This function $f_3(z)$ also belongs to F. A direct computation shows that

$$
h'_3(z_0) = e^{i\theta} \frac{1}{1 - |h_2(z_0)|^2} \frac{1}{2} \frac{1}{\sqrt{h_1(z_0)}} (1 - |w_0|^2) g'(z_0)
$$

=
$$
\frac{1 - |w_0|^2}{2(1 - |w_0|) \sqrt{|w_0|}} g'(z_0)
$$

=
$$
\frac{1 + |w_0|}{2\sqrt{|w_0|}} g'(z_0) > g'(z_0).
$$

This contradicts with the assumption that $g'(z_0)$ achieves the maximum among F.

- (4) [5 points] Construct a harmonic function $u(z)$ on the first quadrant, $\{z = x + iy \in \mathbb{C} \mid x >$ 0 and $y > 0$ with the following property:
	- $u(z)$ extends continuously to the boundary except at the points 0 and 1;
	- $u(z) = 1$ on the half-lines $\{y = 0, x > 1\}$ and $\{x = 0, y > 0\};$
- $u(z) = 0$ on the segment $\{0 < x < 1, y = 0\}.$

boundary except at the origin. Its value is 0 on the positive real axis, and is 1 on the Hint: On the upper half space, $\frac{1}{\pi} \arg(z)$ is harmonic, and extends continuously to the negative real axis.

Let Ω be the first quadrant, and $\mathbb H$ be the upper half space. Consider

$$
\Omega \xrightarrow{z^2} \mathbb{H} \xrightarrow{\frac{-z}{z-1}} \mathbb{H} .
$$

sent to the positive real axis. Hence, For the boundary point, $0 \mapsto 0 \mapsto 0$, $1 \mapsto 1 \mapsto \infty$ and the segment $\{0 < x < 1, y = 0\}$ is

$$
u(z) = \frac{1}{\pi} \arg \left(\frac{-z^2}{z^2 - 1} \right)
$$

satisfies the desired property.

 (5) [6 points] Let

 $\mathcal{F} = \{f(z) : \text{injective and analytic on } \Omega \mid f(z) \neq 0 \text{ for any } z \in \Omega \}$.

Prove that F is a normal family, in the sense of $\hat{\mathbb{C}}$.

Suppose $\mathcal F$ is not normal. Apply the Zalcman lemma, and consider the rescaled limit $g(z)$: meromorphic on C with $\rho(g)(0) = 1$ and $\rho(g) \leq 1$.

Since F consists of analytic functions and $g(z)$ is not a constant function, $g(z)$ is analytic. In other words, $g(z)$ is an entire function. It is based on the argument principle.

We claim that $g(z)$ is also injective. If there are $z_1 \neq z_2$ such that $g(z_1) = g(z_2)$. We can consider

$$
\frac{1}{2\pi i} \int_{\partial B(z_j,\epsilon)} \frac{g'(w)}{g(w) - g(z_j)} dw = \lim_{n \to \infty} \frac{1}{2\pi i} \int_{\partial B(z_j,\epsilon)} \frac{\tilde{f}'_n(w)}{\tilde{f}_n(w) - g(z_j)} dw
$$

for $j = 1, 2$. By the argument principle, it violates the property that $f_n(z)$ is injective.

It follows that $g(z)$ is an injective entire function, which must be a degree one polynomial. But the similar argument shows that $g(z)$ must omit zero, and thus cannot be a polynomial. This is a contradiction.

Remark. By the Great Picard theorem, an injective entire function cannot have an essential singularity at ∞ . Thus, ∞ is at most a pole of $q(z)$. It follows that $q(z)$ must be a polynomial. Since $q(z)$ is injective, it must have degree 1. This argument is almost the same as that for (6).

- (6) $[3 + 4 \text{ points}]$ Let $f(z)$ be an entire function.
	- (a) Suppose that 0 is a pole of $g(w) = f(1/w)$. Show that $f(z)$ must be a polynomial.

Since 0 is pole of $g(w)$, there exist $n \in \mathbb{N}$ and $C > 0$ such that $|w|^n |g(w)| \leq C$ for any $|w| \leq 1$. Thus, $|f(z)| \leq C|z|^n$ for any $|z| \geq 1$. By Cauchy integral formula, it is not hard to show that $f^k(z) \equiv 0$ for any $k > n$. It follows that $f(z)$ is a polynomial.

(b) Suppose that $f(z)$ is not a polynomial. Then, given any $w_0 \in \mathbb{C}$, how many roots does the equation $f(z) = \zeta_0$ have? Explain your reason.

Hint: You can think about what happens for $f(z) = \exp(z)$.

We first recall the Great Picard theorem: a meromorphic function on the punctured disk $\{z \in \mathbb{C} \mid 0 < |z - z_0| < \delta\}$ that omits three values extend meromorphically to $z=z_0$.

Since $f(z)$ is not a polynomial and $g(w) = f(1/w)$ already omits ∞ , $g(w)$ can only omits one value on any punctured neighborhood of $w = 0$. As a consequence, $f(z)$ can omit at most one value. Moreover, if $f(z)$ omits one value, all the other values must admit a preimage on any (punctured) small neighborhood of $w = 0$ (or $z = \infty$). It follows that there are infinitely many preimages. Thus, $f(z) = \zeta_0$ admit infinitely many solutions with possible one exception of ζ_0 .