COMPLEX ANALYSIS FINAL

THURSDAY, JANUARY 14

[Total: 37 points] In what follows, Ω is always assumed to be an *open* and *connected proper* subset of \mathbb{C} .

- (1) [7 points] True/False questions, no justifications needed.
 - (a) Given any three distinct complex numbers of unit length, ζ_1, ζ_2 and ζ_3 , define

$$f(z) = \int_0^z \frac{1}{\left((w - \zeta_1)(w - \zeta_2)(w - \zeta_3)\right)^{\frac{2}{3}}} \mathrm{d}w$$

as a function on the open unit disk. (Assume that the branch of 2/3-power is suitably chosen.) Then, we can find ζ_1, ζ_2 and ζ_3 such that the image of f(z) is a right triangle.

F This is exactly the Schwarz-Christoffel formula. The image always has outer angle $2\pi/3$. In other words, the image is an equilateral triangle, and is never a right triangle.

(b) Suppose that f(z) is a function on $\partial\Omega$, which is non-negative but not necessarily continuous. Let u(z) be the harmonic function on Ω produced from the Perron's method with f(z). Then, $u(z) \ge 0$ for any $z \in \Omega$.

T Recall that $\mathcal{B} = \{v(z) : \text{subharmonic on } \Omega \mid \limsup_{z \to \zeta} v(z) \leq f(\zeta) \text{ for any } \zeta \in \partial \Omega\}$, and $u(z) = \sup_{v \in \mathcal{B}} v(z)$. It is clear that $0 \in \mathcal{B}$. Thus, $u(z) \geq 0$.

(c) Suppose that $\partial\Omega$ is compact, and f(z) is a continuous function on $\partial\Omega$. Then, there exists a harmonic function u(z) on Ω , which extends continuously to $\partial\Omega$ and which is equal to f(z) on $\partial\Omega$.

F Consider $\Omega = D \setminus \{0\}$ with f(z) = 0 for $z \in \partial D$ and f(0) = 1. See Homework 12 #3b.

(d) For any $\alpha < -1$, there exists an automorphism of $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$, f(z), such that f(0) = 0, f(1) = 1 and $f(-1) = \alpha$.

T See Homework 9 #2e.

(e) Let Ω be the region enclosed by the heart curve, $\Omega = \{x+iy \in \mathbb{C} \mid (x^2+y^2-1)^3-x^2y^3 < 0\}$. Suppose that $\psi(z)$ is an automorphism of Ω with $\psi(0) = 0$. Then, $\psi(z)$ must be the identity map.

 $|\mathbf{F}|$ By the Riemann mapping theorem, Ω is conformal equivalent to D. Moreover, we may choose the map such that 0 is sent of 0. But $z \mapsto e^{i\theta} z$ is an automorphism of D fixing 0.

(f) Consider $\mathcal{F} = \{f_n(z) = \frac{1}{z+n}\}_{n \in \mathbb{N}}$ on \mathbb{C} . It is normal, in the sense of $\hat{\mathbb{C}}$.

T We compute

$$\rho(f_n) = \rho(\frac{1}{f_n}) = \frac{2}{1+|z+n|^2} \le 2$$

By Marty's theorem, it is normal. One can also conclude it directly.

(g) There exists a non-constant entire function f(z), whose image does not contain the negative real axis.

F One can apply little Picard theorem. Or compose a conformal map so that the image lie in the unit disk, and apply the Liouville's theorem.

(2) [5 points] Evaluate $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

Hint: The zeros of $\sin(\pi z)$ are exactly \mathbb{Z} . Since

$$\sin(\pi z) = \sin(\pi x) \cosh(\pi y) + i \cos(\pi x) \sinh(\pi y) \text{ and}$$
$$\cos(\pi z) = \cos(\pi x) \cosh(\pi y) - i \sin(\pi x) \sinh(\pi y) ,$$

it is not hard to show that

$$\frac{1}{2}|\sin(\pi z)| \le |\cos(\pi z)| \le 2|\sin(\pi z)|$$

when $|y| \ge 1000$. Another formula you might need is that

$$\int_{-\infty}^{\infty} \frac{1}{a^2 + s^2} \mathrm{d}s = \frac{\pi}{a} \; .$$

Due to the argument principle,

$$\frac{1}{2\pi i} \int_{\gamma} g(z) \frac{f'(z)}{f(z)} \mathrm{d}z = \sum_{w_j: \text{ zero of } f(z)} g(w_j) \, n(\gamma; w_j)$$

for any analytic function f(z) and g(z). Consider $g(z) = \frac{1}{z^2}$ and $f(z) = \sin(\pi z)$. Let $\gamma_{n,Y}$ be the boundary of the rectangle with vertices $\pm(\frac{1}{2}+n)\pm \tilde{i}Y$. Since g(z) is not analytic at 2 0, the above formula shall be corrected by the residue, $\operatorname{Res}(\frac{1}{z^2}\frac{\pi \cos(\pi z)}{\sin(\pi z)}, 0) = -\frac{\pi^2}{3}$. Then, the formula reads

$$\frac{1}{2\pi i} \int_{\gamma_{n,Y}} \frac{1}{z^2} \frac{\pi \cos(\pi z)}{\sin(\pi z)} dz = 2 \sum_{k=1}^n \frac{1}{k^2} - \frac{\pi^2}{3} \; .$$

We first consider the limit of the integral as $Y \to \infty$. For the horizontal segments of $\gamma_{n,Y}$, the integral is bounded by

$$C_1 \int_{-(\frac{1}{2}+n)+iY}^{(\frac{1}{2}+n)+iY} \frac{1}{|z|^2} |\mathrm{d}z| \le C_2 \int_{-\infty}^{\infty} \frac{1}{s^2 + Y^2} \mathrm{d}s$$
$$= \frac{C_2 \pi}{Y} \xrightarrow{Y \to \infty} 0 \;.$$

For the vertical segments of $\gamma_{n,Y}$, the integral is bounded by

$$C_3 \int_{(\frac{1}{2}+n)-iY}^{(\frac{1}{2}+n)+iY} \frac{1}{|z|^2} \frac{|\sinh(\pi y)|}{|\cosh(\pi y)|} |dz| \le C_3 \int_{(\frac{1}{2}+n)-iY}^{(\frac{1}{2}+n)+iY} \frac{1}{|z|^2} |dz|$$
$$= C_3 \int_{-\infty}^{\infty} \frac{1}{(n+\frac{1}{2})^2 + s^2} ds$$
$$= \frac{C_3\pi}{n+\frac{1}{2}}.$$

It follows that

$$\left| 2\sum_{k=1}^n \frac{1}{k^2} - \frac{\pi^2}{3} \right| \le \frac{C_3\pi}{n + \frac{1}{2}} \; .$$

By letting $n \to \infty$, we find that $\sum_{n=1}^{\infty} 1/n^2 = \pi^2/6$.

- (3) [2+5 points] Suppose that Ω is simply-connected. Fix a point $z_0 \in \Omega$. Let
 - $\mathcal{F} = \{f(z) : \text{injective and analytic on } \Omega \mid f(z_0) = 0, f'(z_0) > 0, |f(z)| < 1 \text{ for any } z \in \Omega \}.$
 - (a) Explain that \mathcal{F} is a normal family, in the sense of \mathbb{C} .

Since |f(z)| < 1, Montel's theorem says that \mathcal{F} is normal.

(b) Suppose that there exists a $g(z) \in \mathcal{F}$ such that $g'(z_0) \ge f'(z_0)$ for any $f \in \mathcal{F}$. Prove that the image of g(z) is the (open) unit disk. Namely, prove the surjectivity part of the Riemann mapping theorem.

Hint: Given $a \in D$, let $\varphi_a(z) = \frac{z-a}{1-\bar{a}z}$. Then, $\varphi'_a(0) = 1 - |a|^2$ and $\varphi'_a(a) = \frac{1}{1-|a|^2}$. Another fact is that $\frac{1+|a|}{2\sqrt{|a|}} > 1$ for any $a \in D \setminus \{0\}$.

Suppose that $w_0 \in D$ does not belong to the image of g(z). Consider

$$h_1(z) = \frac{g(z) - w_0}{1 - \bar{w}_0 g(z)} ;$$

it is injective and the image is still contained in D. Since $h_1(z)$ misses zero and Ω is simply-connected, we can consider

$$h_2(z) = \sqrt{h_1(z)} \; .$$

Since $h_1(z) = (h_2(z))^2$, $h_2(z)$ is also injective. Finally, we adjust the map so that it sends z_0 to 0, and the derivative is positive at z_0 . Namely, consider

$$h_3(z) = e^{i\theta} \frac{h_2(z) - h_2(z_0)}{1 - \overline{h_2(z_0)} h_2(z)} .$$

This function $f_3(z)$ also belongs to \mathcal{F} . A direct computation shows that

$$\begin{aligned} h_3'(z_0) &= e^{i\theta} \frac{1}{1 - |h_2(z_0)|^2} \frac{1}{2} \frac{1}{\sqrt{h_1(z_0)}} (1 - |w_0|^2) g'(z_0) \\ &= \frac{1 - |w_0|^2}{2(1 - |w_0|)\sqrt{|w_0|}} g'(z_0) \\ &= \frac{1 + |w_0|}{2\sqrt{|w_0|}} g'(z_0) > g'(z_0) \;. \end{aligned}$$

This contradicts with the assumption that $g'(z_0)$ achieves the maximum among \mathcal{F} .

- (4) [5 points] Construct a harmonic function u(z) on the first quadrant, $\{z = x + iy \in \mathbb{C} \mid x > 0 \text{ and } y > 0\}$ with the following property:
 - u(z) extends continuously to the boundary except at the points 0 and 1;
 - u(z) = 1 on the half-lines $\{y = 0, x > 1\}$ and $\{x = 0, y > 0\}$;
 - u(z) = 0 on the segment $\{0 < x < 1, y = 0\}$.

Hint: On the upper half space, $\frac{1}{\pi} \arg(z)$ is harmonic, and extends continuously to the boundary except at the origin. Its value is 0 on the positive real axis, and is 1 on the negative real axis.

Let Ω be the first quadrant, and \mathbb{H} be the upper half space. Consider

$$\Omega \xrightarrow{z^2} \mathbb{H} \xrightarrow{\frac{-z}{z-1}} \mathbb{H}$$
.

For the boundary point, $0 \mapsto 0 \mapsto 0$, $1 \mapsto 1 \mapsto \infty$ and the segment $\{0 < x < 1, y = 0\}$ is sent to the positive real axis. Hence,

$$u(z) = \frac{1}{\pi} \arg\left(\frac{-z^2}{z^2 - 1}\right)$$

satisfies the desired property.

(5) [6 points] Let

 $\mathcal{F} = \{f(z): \text{injective and analytic on } \Omega \mid f(z) \neq 0 \text{ for any } z \in \Omega\}$.

Prove that \mathcal{F} is a normal family, in the sense of $\hat{\mathbb{C}}$.

Suppose \mathcal{F} is not normal. Apply the Zalcman lemma, and consider the rescaled limit g(z): meromorphic on \mathbb{C} with $\rho(g)(0) = 1$ and $\rho(g) \leq 1$.

Since \mathcal{F} consists of analytic functions and g(z) is not a constant function, g(z) is analytic. In other words, g(z) is an entire function. It is based on the argument principle.

We claim that g(z) is also injective. If there are $z_1 \neq z_2$ such that $g(z_1) = g(z_2)$. We can consider

$$\frac{1}{2\pi i} \int_{\partial B(z_j,\epsilon)} \frac{g'(w)}{g(w) - g(z_j)} \mathrm{d}w = \lim_{n \to \infty} \frac{1}{2\pi i} \int_{\partial B(z_j,\epsilon)} \frac{\tilde{f}'_n(w)}{\tilde{f}_n(w) - g(z_j)} \mathrm{d}w$$

for j = 1, 2. By the argument principle, it violates the property that $f_n(z)$ is injective.

It follows that g(z) is an injective entire function, which must be a degree one polynomial. But the similar argument shows that g(z) must omit zero, and thus cannot be a polynomial. This is a contradiction.

Remark. By the Great Picard theorem, an injective entire function cannot have an essential singularity at ∞ . Thus, ∞ is at most a pole of g(z). It follows that g(z) must be a polynomial. Since g(z) is injective, it must have degree 1. This argument is almost the same as that for (6).

- (6) [3+4 points] Let f(z) be an entire function.
 - (a) Suppose that 0 is a pole of g(w) = f(1/w). Show that f(z) must be a polynomial.

Since 0 is pole of g(w), there exist $n \in \mathbb{N}$ and C > 0 such that $|w|^n |g(w)| \leq C$ for any $|w| \leq 1$. Thus, $|f(z)| \leq C|z|^n$ for any $|z| \geq 1$. By Cauchy integral formula, it is not hard to show that $f^k(z) \equiv 0$ for any k > n. It follows that f(z) is a polynomial.

(b) Suppose that f(z) is not a polynomial. Then, given any $w_0 \in \mathbb{C}$, how many roots does the equation $f(z) = \zeta_0$ have? Explain your reason.

Hint: You can think about what happens for $f(z) = \exp(z)$.

We first recall the Great Picard theorem: a meromorphic function on the punctured disk $\{z \in \mathbb{C} \mid 0 < |z - z_0| < \delta\}$ that omits three values extend meromorphically to $z = z_0$.

Since f(z) is not a polynomial and g(w) = f(1/w) already omits ∞ , g(w) can only omits one value on any punctured neighborhood of w = 0. As a consequence, f(z) can omit at most one value. Moreover, if f(z) omits one value, all the other values must admit a preimage on any (punctured) small neighborhood of w = 0 (or $z = \infty$).

It follows that there are infinitely many preimages. Thus, $f(z) = \zeta_0$ admit infinitely many solutions with possible one exception of ζ_0 .