
COMPLEX ANALYSIS

FINAL

THURSDAY, JANUARY 14

[Total: 37 points] In what follows, Ω is always assumed to be an open and connected proper

subset of C.

(1) [7 points] True/False questions, no justifications needed.

(a) Given any three distinct complex numbers of unit length, ζ1, ζ2 and ζ3, define

f(z) =

∫ z

0

1
(
(w − ζ1)(w − ζ2)(w − ζ3)

) 2
3

dw

as a function on the open unit disk. (Assume that the branch of 2/3-power is suitably

chosen.) Then, we can find ζ1, ζ2 and ζ3 such that the image of f(z) is a right triangle.

F This is exactly the Schwarz–Christoffel formula. The image always has outer angle

2π/3. In other words, the image is an equilateral triangle, and is never a right triangle.

(b) Suppose that f(z) is a function on ∂Ω, which is non-negative but not necessarily

continuous. Let u(z) be the harmonic function on Ω produced from the Perron’s

method with f(z). Then, u(z) ≥ 0 for any z ∈ Ω.

T Recall that B = {v(z) : subharmonic on Ω | lim supz→ζ v(z) ≤ f(ζ) for any ζ ∈
∂Ω}, and u(z) = supv∈B v(z). It is clear that 0 ∈ B. Thus, u(z) ≥ 0.

(c) Suppose that ∂Ω is compact, and f(z) is a continuous function on ∂Ω. Then, there

exists a harmonic function u(z) on Ω, which extends continuously to ∂Ω and which is

equal to f(z) on ∂Ω.

F Consider Ω = D\{0} with f(z) = 0 for z ∈ ∂D and f(0) = 1. See Homework 12

#3b.

(d) For any α < −1, there exists an automorphism of Ĉ = C ∪ {∞}, f(z), such that

f(0) = 0, f(1) = 1 and f(−1) = α.

T See Homework 9 #2e.

(e) Let Ω be the region enclosed by the heart curve, Ω = {x+iy ∈ C | (x2+y2−1)3−x2y3 <

0}. Suppose that ψ(z) is an automorphism of Ω with ψ(0) = 0. Then, ψ(z) must be

the identity map.
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F By the Riemann mapping theorem, Ω is conformal equivalent to D. Moreover, we

may choose the map such that 0 is sent ot 0. But z 7→ eiθz is an automorphism of D

fixing 0.

(f) Consider F = {fn(z) = 1
z+n}n∈N on C. It is normal, in the sense of Ĉ.

T We compute

ρ(fn) = ρ(
1

fn
) =

2

1 + |z + n|2
≤ 2 .

By Marty’s theorem, it is normal. One can also conclude it directly.

(g) There exists a non-constant entire function f(z), whose image does not contain the

negative real axis.

F One can apply little Picard theorem. Or compose a conformal map so that the

image lie in the unit disk, and apply the Liouville’s theorem.

(2) [5 points] Evaluate
∞∑

n=1

1

n2
.

Hint: The zeros of sin(πz) are exactly Z. Since

sin(πz) = sin(πx) cosh(πy) + i cos(πx) sinh(πy) and

cos(πz) = cos(πx) cosh(πy)− i sin(πx) sinh(πy) ,

it is not hard to show that

1

2
| sin(πz)| ≤ | cos(πz)| ≤ 2| sin(πz)|

when |y| ≥ 1000. Another formula you might need is that
∫ ∞

−∞

1

a2 + s2
ds =

π

a
.

Due to the argument principle,

1

2πi

∫

γ
g(z)

f ′(z)
f(z)

dz =
∑

wj : zero of f(z)

g(wj)n(γ;wj)

for any analytic function f(z) and g(z). Consider g(z) = 1
z2

and f(z) = sin(πz). Let γn,Y

be the boundary of the rectangle with vertices ±(1
2 + n)± iY . Since g(z) is not analytic at
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0, the above formula shall be corrected by the residue, Res( 1
z2
π cos(πz)
sin(πz) , 0) = −π2

3 . Then, the

formula reads

1

2πi

∫

γn,Y

1

z2

π cos(πz)

sin(πz)
dz = 2

n∑

k=1

1

k2
− π2

3
.

We first consider the limit of the integral as Y → ∞. For the horizontal segments of

γn,Y , the integral is bounded by

C1

∫ ( 1
2

+n)+iY

−( 1
2

+n)+iY

1

|z|2
|dz| ≤ C2

∫ ∞

−∞

1

s2 + Y 2
ds

=
C2π

Y

Y→∞−→ 0 .

For the vertical segments of γn,Y , the integral is bounded by

C3

∫ ( 1
2

+n)+iY

( 1
2

+n)−iY

1

|z|2
| sinh(πy)|
| cosh(πy)|

|dz| ≤ C3

∫ ( 1
2

+n)+iY

( 1
2

+n)−iY

1

|z|2
|dz|

= C3

∫ ∞

−∞

1

(n+ 1
2)2 + s2

ds

=
C3π

n+ 1
2

.

It follows that ∣∣∣∣∣2
n∑

k=1

1

k2
− π2

3

∣∣∣∣∣ ≤
C3π

n+ 1
2

.

By letting n→∞, we find that
∑∞

n=1 1/n2 = π2/6.

(3) [2 + 5 points] Suppose that Ω is simply-connected. Fix a point z0 ∈ Ω. Let

F = {f(z) : injective and analytic on Ω | f(z0) = 0, f ′(z0) > 0, |f(z)| < 1 for any z ∈ Ω} .

(a) Explain that F is a normal family, in the sense of C.

Since |f(z)| < 1, Montel’s theorem says that F is normal.

(b) Suppose that there exists a g(z) ∈ F such that g′(z0) ≥ f ′(z0) for any f ∈ F . Prove

that the image of g(z) is the (open) unit disk. Namely, prove the surjectivity part of

the Riemann mapping theorem.

Hint: Given a ∈ D, let ϕa(z) = z−a
1−āz . Then, ϕ′a(0) = 1 − |a|2 and ϕ′a(a) = 1

1−|a|2 .

Another fact is that 1+|a|
2
√
|a|
> 1 for any a ∈ D\{0}.

Suppose that w0 ∈ D does not belong to the image of g(z). Consider

h1(z) =
g(z)− w0

1− w̄0g(z)
;
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it is injective and the image is still contained in D. Since h1(z) misses zero and Ω is

simply-connected, we can consider

h2(z) =
√
h1(z) .

Since h1(z) = (h2(z))2, h2(z) is also injective. Finally, we adjust the map so that it

sends z0 to 0, and the derivative is positive at z0. Namely, consider

h3(z) = eiθ
h2(z)− h2(z0)

1− h2(z0)h2(z)
.

This function f3(z) also belongs to F . A direct computation shows that

h′3(z0) = eiθ
1

1− |h2(z0)|2
1

2

1√
h1(z0)

(1− |w0|2)g′(z0)

=
1− |w0|2

2(1− |w0|)
√
|w0|

g′(z0)

=
1 + |w0|
2
√
|w0|

g′(z0) > g′(z0) .

This contradicts with the assumption that g′(z0) achieves the maximum among F .

(4) [5 points] Construct a harmonic function u(z) on the first quadrant, {z = x+ iy ∈ C | x >
0 and y > 0} with the following property:

• u(z) extends continuously to the boundary except at the points 0 and 1;

• u(z) = 1 on the half-lines {y = 0, x > 1} and {x = 0, y > 0};
• u(z) = 0 on the segment {0 < x < 1, y = 0}.250 Chapter 8. CONFORMAL MAPPINGS
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Figure 11. Successive conformal maps in Exercise 8

Prove that

|F (z)| ≤
∣∣∣∣
z − i

z + i

∣∣∣∣ for all z ∈ H.

11. Show that if f : D(0, R) → C is holomorphic, with |f(z)| ≤M for someM > 0,
then

∣∣∣∣∣
f(z)− f(0)

M2 − f(0)f(z)

∣∣∣∣∣ ≤
|z|
MR

.

[Hint: Use the Schwarz lemma.]

12. A complex number w ∈ D is a fixed point for the map f : D → D if f(w) = w.

(a) Prove that if f : D → D is analytic and has two distinct fixed points, then f
is the identity, that is, f(z) = z for all z ∈ D.

Hint: On the upper half space, 1
π arg(z) is harmonic, and extends continuously to the

boundary except at the origin. Its value is 0 on the positive real axis, and is 1 on the

negative real axis.

Let Ω be the first quadrant, and H be the upper half space. Consider

Ω
z2−→ H

−z
z−1−→ H .

For the boundary point, 0 7→ 0 7→ 0, 1 7→ 1 7→ ∞ and the segment {0 < x < 1, y = 0} is

sent to the positive real axis. Hence,

u(z) =
1

π
arg

(
−z2

z2 − 1

)

satisfies the desired property.
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(5) [6 points] Let

F = {f(z) : injective and analytic on Ω | f(z) 6= 0 for any z ∈ Ω} .

Prove that F is a normal family, in the sense of Ĉ.

Suppose F is not normal. Apply the Zalcman lemma, and consider the rescaled limit

g(z): meromorphic on C with ρ(g)(0) = 1 and ρ(g) ≤ 1.

Since F consists of analytic functions and g(z) is not a constant function, g(z) is analytic.

In other words, g(z) is an entire function. It is based on the argument principle.

We claim that g(z) is also injective. If there are z1 6= z2 such that g(z1) = g(z2). We can

consider

1

2πi

∫

∂B(zj ,ε)

g′(w)

g(w)− g(zj)
dw = lim

n→∞
1

2πi

∫

∂B(zj ,ε)

f̃ ′n(w)

f̃n(w)− g(zj)
dw

for j = 1, 2. By the argument principle, it violates the property that fn(z) is injective.

It follows that g(z) is an injective entire function, which must be a degree one polynomial.

But the similar argument shows that g(z) must omit zero, and thus cannot be a polynomial.

This is a contradiction.

Remark. By the Great Picard theorem, an injective entire function cannot have an essential

singularity at ∞. Thus, ∞ is at most a pole of g(z). It follows that g(z) must be a

polynomial. Since g(z) is injective, it must have degree 1. This argument is almost the

same as that for (6).

(6) [3 + 4 points] Let f(z) be an entire function.

(a) Suppose that 0 is a pole of g(w) = f(1/w). Show that f(z) must be a polynomial.

Since 0 is pole of g(w), there exist n ∈ N and C > 0 such that |w|n |g(w)| ≤ C for any

|w| ≤ 1. Thus, |f(z)| ≤ C|z|n for any |z| ≥ 1. By Cauchy integral formula, it is not

hard to show that fk(z) ≡ 0 for any k > n. It follows that f(z) is a polynomial.

(b) Suppose that f(z) is not a polynomial. Then, given any w0 ∈ C, how many roots does

the equation f(z) = ζ0 have? Explain your reason.

Hint: You can think about what happens for f(z) = exp(z).

We first recall the Great Picard theorem: a meromorphic function on the punctured

disk {z ∈ C | 0 < |z − z0| < δ} that omits three values extend meromorphically to

z = z0.

Since f(z) is not a polynomial and g(w) = f(1/w) already omits ∞, g(w) can only

omits one value on any punctured neighborhood of w = 0. As a consequence, f(z)

can omit at most one value. Moreover, if f(z) omits one value, all the other values

must admit a preimage on any (punctured) small neighborhood of w = 0 (or z =∞).
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It follows that there are infinitely many preimages. Thus, f(z) = ζ0 admit infinitely

many solutions with possible one exception of ζ0.
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