## DIFFERENTIAL TOPOLOGY HOMEWORK 13

DUE: MONDAY, MAY 26

(1) (Inverse element of  $\pi_n$ ) Let X be a topological space, and p be a point in X. Suppose that f is a continuous maps from  $(I^n, \partial I^n)$  to (X, p). Define

$$\tilde{f}(s_1, s_2, \dots, s_n) = f(1 - s_1, s_2, \dots, s_n)$$
.

Show that  $f * \tilde{f}$  represents the trivial element in  $\pi_n(X, p)$ .

The following pasting lemma is useful. Suppose that  $Y = P \cup Q$  where P and Q are both closed. Then, a map  $g: Y \to X$  is continuous if  $g|_P$  and  $g|_Q$  are continuous.

(2) (Klein bottle) Thom's theorem asserts that there is only one non-trivial class of  $\mathcal{N}^2$ , which is given by  $\mathbb{RP}^2$ . Explain that the Klein bottle represents a trivial element in  $\mathcal{N}^2$ , i.e. it bounds a compact 3-manifold.



The following description of the Klein bottle can help you. Let X be a manifold, and  $\tau$  be a self-diffeomorphism of X. The mapping torus of  $(X, \tau)$  is defined to be

$$\frac{I\times X}{(1,x)\sim (0,\tau(x))}\ .$$

Or equivalently, take  $U_{-} = (-\epsilon, 1/2) \times X$ ,  $U_{0} = (0, 1) \times X$  and  $U_{+} = (1/2, 1 + \epsilon) \times X$ . Identify  $(-\epsilon, \epsilon) \times X \subset U_{-}$  and  $(1 - \epsilon, 1 + \epsilon) \times X \subset U_{+}$  by  $(s, \tau(x)) \sim (1 + s, x)$ . The identifications with  $U_{0}$  are basically given by the identity map. The latter description shows that the mapping torus is still a manifold. Note that the mapping torus is a fiber bundle over  $\mathbf{S}^{1}$  with fiber to be X.



With this understood, the Klein bottle is the mapping torus of  $(\mathbf{S}^1, \iota)$  where  $\iota$  is the antipodal map. (*Hint.* You can try to 'fill' the fibers and 'extend' the self-diffeomorphism to construct a compact 3-manifold with boundary.)