DIFFERENTIAL TOPOLOGY HOMEWORK 12

DUE: MONDAY, MAY 19

(1) Here is the abstract definition for smooth manifolds. A topological space M is called an n-dimensional manifold if there is an open cover $\mathscr{U}=\left\{U_{i}\right\}_{i \in I}$ such that

- for each $i \in I$, there is a continuous map $\varphi_{i}: U_{i} \rightarrow \mathbb{R}^{n}$ which maps U_{i} homeomorphically to an open subset of \mathbb{R}^{n}; these datum $\left(U_{i}, \varphi_{i}\right)$ are called coordinate charts;
- the transitions between coordinate charts are smooth, i.e.

$$
\begin{equation*}
\varphi_{j} \varphi_{i}^{-1}: \varphi_{i}\left(U_{i} \cap U_{j}\right) \rightarrow \varphi_{j}\left(U_{i} \cap U_{j}\right) \tag{0.1}
\end{equation*}
$$

is smooth; note that the domain and target space are both open subsets of \mathbb{R}^{n}, and the smoothness makes sense.
For compact manifold, it is not hard to prove that this definition coincides with the definition as a submanifold of \mathbb{R}^{n}. You can find a proof in [Hirsch, Theorem 3.4 of $\S 1.3$].

Consider the space of all 2-planes in \mathbb{R}^{4}. The space is the Grassmannian manifold $\mathrm{G}_{2,2}$. As explained in class, it is the quotient space

$$
\rho: \mathrm{GL}(2 ; \mathbb{R}) \backslash \mathrm{M}(2,4 ; 2) \rightarrow \mathrm{G}_{2,2}
$$

The topology of $\mathrm{G}_{2,2}$ is given by the quotient topology. Let $V_{0} \subset \mathrm{M}(2,4 ; 2)$ be the open set consisting of the matrices whose first two columns are linearly independent, and $V_{1} \subset \mathrm{M}(2,4 ; 2)$ be the open set consisting of the matrices whose last two columns are linearly independent. Denote their images under ρ by U_{0} and U_{1}, respectively.
(a) During the lecture, we constructed a homeomorphism $\varphi_{0}: U_{0} \rightarrow \mathbb{R}^{4}$. You can similarly construct a homeomorphism $\varphi_{1}: U_{1} \rightarrow \mathbb{R}^{4}$. Work out $\varphi_{1} \varphi_{0}^{-1}$, and check it is smooth.

The universal bundle γ_{2}^{2} is defined by

$$
\begin{array}{r}
\left\{([A], \vec{v}) \in \mathrm{G}_{2,2} \times \mathbb{R}^{4} \mid \vec{v}\right. \text { belongs to the 2-plane spanned by } \\
\text { the row vectors of } A\} .
\end{array}
$$

(b) During the lecture, we constructed a trivialization $\pi^{-1}\left(U_{0}\right) \cong U_{0} \times \mathbb{R}^{2}$. You can similarly construct a trivialization for $\pi^{-1}\left(U_{1}\right)$. Work out the transition map between $\pi^{-1}\left(U_{0}\right)$ and $\pi^{-1}\left(U_{1}\right)$. You shall get a smooth map from $U_{0} \cap U_{1} \rightarrow \mathrm{GL}(2 ; \mathbb{R})$.
(2) This exercise is a continuation of Exercise (3) and (4) of Homework 11. Consider the rank 2 subbundle L_{k} of $\Sigma \times \mathbb{R}^{4}$. What is the quotient bundle $\Sigma \times \mathbb{R}^{4} / L_{k}$? Is it equivalent to L_{k} (or E_{k}) for some k ? (Hint. Endow the fibers of $\Sigma \times \mathbb{R}^{4}$ with the standard inner product of \mathbb{R}^{4}. The quotient bundle is equivalent to the orthogonal bundle L_{k}^{\perp}.)

