DIFFERENTIAL TOPOLOGY HOMEWORK 12

DUE: MONDAY, MAY 19

- (1) Here is the abstract definition for smooth manifolds. A topological space M is called an *n*-dimensional manifold if there is an open cover $\mathscr{U} = \{U_i\}_{i \in I}$ such that
 - for each $i \in I$, there is a continuous map $\varphi_i : U_i \to \mathbb{R}^n$ which maps U_i homeomorphically to an open subset of \mathbb{R}^n ; these datum (U_i, φ_i) are called *coordinate* charts;
 - the transitions between coordinate charts are smooth, i.e.

$$\varphi_j \varphi_i^{-1} : \varphi_i(U_i \cap U_j) \to \varphi_j(U_i \cap U_j) \tag{0.1}$$

is *smooth*; note that the domain and target space are both open subsets of \mathbb{R}^n , and the smoothness makes sense.

For compact manifold, it is not hard to prove that this definition coincides with the definition as a submanifold of \mathbb{R}^n . You can find a proof in [Hirsch, Theorem 3.4 of §1.3].

Consider the space of all 2-planes in \mathbb{R}^4 . The space is the Grassmannian manifold $G_{2,2}$. As explained in class, it is the quotient space

$$\rho: \operatorname{GL}(2; \mathbb{R}) \setminus \operatorname{M}(2, 4; 2) \to \operatorname{G}_{2,2}$$
.

The topology of $G_{2,2}$ is given by the quotient topology. Let $V_0 \subset M(2,4;2)$ be the open set consisting of the matrices whose *first two* columns are linearly independent, and $V_1 \subset M(2,4;2)$ be the open set consisting of the matrices whose *last two* columns are linearly independent. Denote their images under ρ by U_0 and U_1 , respectively.

(a) During the lecture, we constructed a homeomorphism $\varphi_0 : U_0 \to \mathbb{R}^4$. You can similarly construct a homeomorphism $\varphi_1 : U_1 \to \mathbb{R}^4$. Work out $\varphi_1 \varphi_0^{-1}$, and check it is smooth.

The universal bundle γ_2^2 is defined by

 $\{([A], \vec{v}) \in \mathcal{G}_{2,2} \times \mathbb{R}^4 \mid \vec{v} \text{ belongs to the 2-plane spanned by }\}$

the row vectors of A.

- (b) During the lecture, we constructed a trivialization $\pi^{-1}(U_0) \cong U_0 \times \mathbb{R}^2$. You can similarly construct a trivialization for $\pi^{-1}(U_1)$. Work out the transition map between $\pi^{-1}(U_0)$ and $\pi^{-1}(U_1)$. You shall get a smooth map from $U_0 \cap U_1 \to \mathrm{GL}(2; \mathbb{R})$.
- (2) This exercise is a continuation of Exercise (3) and (4) of Homework 11. Consider the rank 2 subbundle L_k of $\Sigma \times \mathbb{R}^4$. What is the quotient bundle $\Sigma \times \mathbb{R}^4/L_k$? Is it equivalent to L_k (or E_k) for some k? (*Hint.* Endow the fibers of $\Sigma \times \mathbb{R}^4$ with the standard inner product of \mathbb{R}^4 . The quotient bundle is equivalent to the orthogonal bundle L_k^{\perp} .)