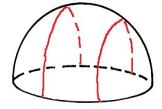
DIFFERENTIAL TOPOLOGY HOMEWORK 11

DUE: MONDAY, MAY 12

(1) Explain that $\mathbb{RP}^2 = \mathbf{S}^2 / \{\pm 1\}$ can be obtained by gluing a disk to the Möbius band. The following picture is the hint.



(2) Any element in $GL(2; \mathbb{R})$ has a unique factorization as follows:

$$\begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} \rho & \frac{ac+bd}{\sqrt{a^2+b^2}} \\ 0 & \frac{ad-bc}{\rho} \end{bmatrix}$$
(\blacklozenge)

where $\rho > 0$ and $e^{i\phi}$ are defined by $(a, b) = (\rho \cos \phi, \rho \sin \phi)$. Note that $(a, b) \neq (0, 0)$.

Let M be a compact, connected, oriented surface whose boundary is diffeomorphic to \mathbf{S}^1 . Suppose that $f: M \to \operatorname{GL}(2; \mathbb{R})$ is a smooth map. The main purpose of this exercise is to show that $\partial f: \mathbf{S}^1 \to \operatorname{GL}(2; \mathbb{R})$ is homotopic to a constant map. Moreover, the constant map can taken to be $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ if $\det(f) > 0$, and can taken to be $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ if $\det(f) < 0$.

According to (\spadesuit) , f decomposes into two *smooth* maps, f_1 and f_2 . The image of f_1 belongs to SO(2). The image of f_2 belongs to the space of non-degenerate upper-triangular matrices with positive (1, 1)-element.

- (a) Show that ∂f_1 is homotopic to the constant map to the identity matrix. (*Hint.* You may invoke (3) of Homework 8.)
- (b) Show that ∂f_2 is homotopic to a constant map. Moreover, the constant map can taken to be $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ if $\det(f) > 0$, and can taken to be $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ if $\det(f) < 0$.
- (c) Combine Part (a) and (b) to show that ∂f is homotopic to a constant map with the desired property.

We remark that the same argument can be used to prove that $GL(2; \mathbb{R})$ has two components.

(3) Let Σ be an oriented surface without boundary (also being compact and connected). Let *o* be a point on Σ , and *U* be a coordinate neighborhood of *o*. Assume *U* is diffeomorphic to $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 2\}$. Denote the complement of *o* by *V*. It is clear that *U* and *V* constitute a locally finite open cover of Σ .

For any integer k, introduce the rank 2 vector bundle E_k by the following transition function

$$g_{U,V}^{k}(x,y) = \begin{bmatrix} r^{k}\cos(k\theta) & r^{k}\sin(k\theta) \\ -r^{k}\sin(k\theta) & r^{k}\cos(k\theta) \end{bmatrix} \in \mathcal{C}^{\infty}(U \cap V; \operatorname{GL}(2; \mathbb{R}))$$
(\varphi)

where the $(x, y) = (r \cos \theta, r \sin \theta)$ is the coordinate on U.

(a) Suppose that k and ℓ are two distinct, nonnegative integers. Prove that E_k and E_ℓ are not equivalent. (Hint. Suppose they are equivalent. Namely, there exist $h_U \in \mathcal{C}^{\infty}(U; \operatorname{GL}(2; \mathbb{R}))$ and $h_V \in \mathcal{C}^{\infty}(V; \operatorname{GL}(2; \mathbb{R}))$ such that the following diagram commutes over $U \cap V$:

$$\begin{array}{cccc} V \times \mathbb{R}^2 & \stackrel{(p,h_V(p))}{\longrightarrow} & V \times \mathbb{R}^2 \\ (p,g^k_{U,V}(p)) & & & & & & \\ U \times \mathbb{R}^2 & \stackrel{(p,h_U(p))}{\longrightarrow} & & & U \times \mathbb{R}^2 \end{array}$$

In other words, we have $g_{U,V}^k(p) = (h_U(p))^{-1} \cdot g_{U,V}^\ell(p) \cdot h_V(p)$ for any $p \in U \cap V$. Use (2) to show that $g_{U,V}^k$ is homotopic to $g_{U,V}^\ell$ as maps from $U \cap V$ to $GL(2; \mathbb{R})$. And try to get a contradiction.)

(b) Show that E_k and E_{-k} are equivalent.

Here are two remarks.

- By introducing the *orientation* for vector bundles, we can distinguish E_k from E_{-k} .
- A similar construction produces a rank d vector bundle on an n-dimensional manifold from a smooth map from $\mathbf{B}^n \setminus \{0\}$ to $\operatorname{GL}(d; \mathbb{R})$. The topology of the the resulting bundle is determined by the homotopy class of the map from \mathbf{S}^{n-1} (or $\mathbf{B}^n \setminus \{0\}$) to $\operatorname{GL}(d; \mathbb{R})$.
- (4) This exercise is a continuation of (3). Suppose that $\chi(r)$ is a smooth function which is equal to 1 when $r \leq 1$ and vanishes when $r \geq \sqrt{2}$. For any integer k, define a rank 2 subbundle L_k of $\Sigma \times \mathbb{R}^4$ as follows:
 - For $(x, y) \in U$, $L_k|_{(x,y)}$ consists of the vectors $(u_1, u_2, v_1, v_2) \in \mathbb{R}^4$ satisfying

$$\begin{bmatrix} r^k \cos(k\theta) & -r^k \sin(k\theta) \\ r^k \sin(k\theta) & r^k \cos(k\theta) \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} - \chi(r) \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = 0$$

• Outside U, the fiber of L_k is the subspace $\{(0, 0, v_1, v_2)\} \subset \mathbb{R}^4$.

Prove that L_k is equivalent to the bundle E_k defined in (3).