DIFFERENTIAL TOPOLOGY HOMEWORK 9

DUE: MONDAY, APRIL 21

The following exercises are taken from [GP].

- (1) Prove that $\chi(X \times Y) = \chi(X) \cdot \chi(Y)$. (*Hint.* Both \mathbf{Id}_X and \mathbf{Id}_Y are homotopic to a Lefschetz map.)
- (2) Consider the following maps from $\mathbb{C} \cong \mathbb{R}^2$ into itself. The maps will be described in terms of complex coordinate.
 - (a) Check that $z \mapsto z^m + z$ has a fixed point with local Lefschetz number m at the origin, where m is a positive integer.
 - (b) Show that for any $c \neq 0$, the homotopic map $z \mapsto z^m + z + c$ is a Lefschetz map, with *m* fixed points that are all close to zero if *c* is small.
 - (c) Show that the map $z \mapsto \bar{z}^m + z$ has a fixed point of local Lefschetz number -m at the origin.
- (3) Let Σ be a compact, oriented surface (without boundary). Suppose that Σ has a *triangulation*. Apply the Poincaré–Hopf theorem to prove that $V E + F = \chi(\Sigma)$ where V, E, F are the total number of vertices, edges, faces of the triangulation, respectively.
- (4) Find out the index of the following vector fields. (No justications needed.)

(h)