DIFFERENTIAL TOPOLOGY
 HOMEWORK 7

DUE: MONDAY, APRIL 7

The following exercises are taken from [GP].
(1) Compute the orientation of $X \cap Z$ in the following examples by exhibiting positively oriented bases at every point. By convention, we orient \mathbb{R}^{3} by $\left(e_{1}, e_{2}, e_{3}\right)$. Orient xyplane by $\left(e_{1}, e_{2}\right)$, the $y z$-plane by $\left(e_{2}, e_{3}\right)$. Finally, orient S^{1} and S^{2} as the boundary of B^{2} and B^{3}, respectively.
(a) $X=S^{1}, Z=y$-axis in \mathbb{R}^{2}.
(b) $S=S^{2}, Z=y z$-plane in \mathbb{R}^{3}.
(c) $X=S^{1}$ in the $x y$-plane, $Z=y z$-plane in \mathbb{R}^{3}.
(d) $X=\left\{(x, y, z) \mid x^{2}+y^{2}-z^{2}=1\right\}$ with the orientation induced by $+1 \in \mathbb{R}^{1}, Z=x y$ plane in \mathbb{R}^{3}.
(2) Let $p(z)$ be a complex polynomial. Suppose that $\Omega \subset \mathbb{R}^{2}$ is a compact region whose boundary is a smooth curve. Show that if $p(z)$ has no zeros on $\partial \Omega$, then the total number of zeros of $p(z)$ inside Ω, counting multiplicities, is the degree of the map $p /|p|: \partial \Omega \rightarrow S^{1}$. (Hint. The zeros of a complex polynomial are discrete, and thus are finite in Ω. Denote the zeros by $\left\{z_{j}\right\}_{j=1}^{n}$. We may choose a small disk $D_{j} \subset \Omega$ around z_{j} such that these disks are disjoint from each other. Consider the map $p /|p|: W-\bigcup_{j=1}^{n} D_{j} \rightarrow S^{1}$.)
(3) (a) Let X be an orientable manifold. Show that both orientations on X induce the same product orientation on $X \times X$.
(b) Let Z be a compact submanifold of Y, both oriented, with $\operatorname{dim} Z=\frac{1}{2} \operatorname{dim} Y$. We have explained in class that

$$
\begin{equation*}
I(Z, Z)=I(Z \times Z, \Delta) \tag{0.1}
\end{equation*}
$$

where Δ is the diagonal of Y. Since both hand sides are zero when $\operatorname{dim} Z$ is odd, the sign $(-1)^{\operatorname{dim} Z}$ is not needed here. Note that the left hand side is the intersection number in Y, and the right hand side is the intersection number in $Y \times Y$.

Prove that the Euler characteristic of an orientable manifold X is independent of the choice of orientation. (Hint. Apply (0.1) for $Z=\Delta$ in $Y=X \times X$. In this case, all the manifolds appear in the right hand side of (0.1) is a square, and then invoke Part (a).)

