DIFFERENTIAL TOPOLOGY HOMEWORK 6

DUE: MONDAY, MARCH 31

The following exercises are taken from [GP].

- (1) (a) If $f: X \to Y$ is homotopic to a constant map, show that $I_2(f, Z) = 0$ for all complementary dimensional closed $Z \subset Y$, except perhaps if dim X = 0. (*Hint.* Show that if dim $Z < \dim Y$, then f can be homotopic to a constant map $X \to \{y\}$ with $y \notin Z$.)
 - (b) If X is one point, for which Z will $I_2(f, Z) \neq 0$?
- (2) A manifold is said to be *contractible* if the identity map is homotopic to the constant map. For instance, Euclidean spaces are contractible.
 - (a) Prove that the intersection theory is vacuous for contractible manifolds. That is to say, if Y is contractible of positive dimension, then $I_2(f,Z) = 0$ for any $f: X \to Y$ where X is compact of positive dimension, Z is closed, and they are of complementary dimension.
 - (b) Show that except the one-point space, no compact (and connected) manifolds is contractible. (*Hint*. Apply part (a) for the identity map with Z to be any point in Y.)
- (3) This exercise asks you to finish the missing step in the proof of the Jordan–Brouwer separation theorem. Suppose that X is a compact, connected hypersurface in \mathbb{R}^n . Given a point z in $\mathbb{R}^n \setminus X$ and a direction vector \vec{v} in S^{n-1} , consider the ray $\ell(\vec{v})$ emanating from z in the direction of \vec{v} :

$$\ell(\vec{v}) = \left\{ z + t\vec{v} \in \mathbb{R}^n \mid t > 0 \right\} .$$

(a) Check that $\ell(\vec{v})$ is transversal to X if and only if \vec{v} is a regular value of the map

$$u: X \to S^{n-1}$$

$$x \mapsto \frac{f(x) - z}{|f(x) - z|}$$

where $f: X \to \mathbb{R}^n$ is the inclusion map.

- (b) Prove that almost every $\vec{v} \in S^{n-1}$ achieves the transversality condition of (a). (*Hint*. This is a typical application of the parametric transversality theorem.)
- (c) Suppose that \vec{v} satisfies the transversality condition. Let z' be a point in $\ell(\vec{v})$ and $z' \notin X$. Show that $W_2(X, z) = W_2(X, z') + k \pmod{2}$ where k is the number of times $\ell(\vec{v})$ intersects X between z and z'.

With this understood, it is not hard to show that there exists some $z' \notin X$ such that $W_2(X, z') = 1$. (You don't have to submit this part.)

(4) Let $F: S^n \to \mathbb{R}^n$ be a smooth function satisfying the symmetry condition F(-x) = -F(x) for any $x \in S^n$. Show that there exits some $x' \in S^n$ such that F(x') = 0. (*Hint*. If not, consider that map $S^n \to S^n$ which maps x to $(\frac{F(x)}{|F(x)|}, 0)$. What can you say about its (mod 2) degree?)