DIFFERENTIAL TOPOLOGY HOMEWORK 4

DUE: MONDAY, MARCH 17

The following exercises are taken from [GP]. You only have to choose 6 out of 7, but you cannot skip (3). If you do all of them, you will get some bonus points.

- (1) Consider the unit sphere S^3 in \mathbb{R}^4 . Show that TS^3 is diffeomorphic to $S^3 \times \mathbb{R}^3$. (*Hint.* Any $(x, y, z, w) \in S^3$ is always perpendicular to the following three vectors: (-y, x, -w, z), (-z, w, x, -y), (-w, -z, y, x).)
- (2) The *projection* is a canonical map from the tangent bundle to the original manifold. It is defined by

$$\begin{aligned} \pi : \quad TX \subset \mathbb{R}^N \times \mathbb{R}^N & \to \quad X \subset \mathbb{R}^N \\ (x,v) & \mapsto \quad x \end{aligned}$$

Check that π is a submersion.

(3) A vector field \vec{v} on a manifold $X \subset \mathbb{R}^N$ is a smooth map $\vec{v} : X \to \mathbb{R}^N$ such that $\vec{v}(x) \in T_x X$ for any $x \in X$. Equivalently, it is a smooth map from X to TX such that $\pi \circ \vec{v}$ is the identity map on X. For instance, the three vectors given in the hint for (1) are defined at every point of S^3 , and thus are vector fields on S^3 .

A point $x \in X$ is called a zero of the vector field \vec{v} if $\vec{v}(x) = 0$. A vector field \vec{v} is said to be *nowhere zero* if it has no zeros.

(a) If k is a positive odd integer, show that there exists a nowhere zero vector field \vec{v} on S^k .

(b) Prove that if S^k has a nowhere zero vector field, then the antipodal map is homotopic to the identity map. (*Hint*. It suffices to show that both maps are homotopic to the map $\vec{v}/|\vec{v}|$).

- (4) Prove the (weak) Whitney immersion theorem: every k-dimensional manifold can be immersed in \mathbb{R}^{2k} . (Hint. For an immersion $f : X \subset \mathbb{R}^N$, consider the derivative map $TX \to \mathbb{R}^N$ defined by $(x, v) \mapsto df|_x(v)$.)
- (5) Show that any manifold X admits a proper map $\rho: X \to \mathbb{R}$.
- (6) Let X be a k-dimensional manifold with boundary. Show that ∂X is a (k-1)-dimensional manifold without boundary.
- (7) (a) Show that the fixed point in the Brouwer fixed-point theorem needs not to be an interior point.

(b) Show that the Brouwer fixed-point theorem is false for the open ball $\{x \in \mathbb{R}^n \mid |x| < 1\}$.