DIFFERENTIAL TOPOLOGY
 HOMEWORK 2

DUE: MONDAY, MARCH 3

The following exercises are taken from [GP].
(1) (a) Let $x_{1}, x_{2}, \ldots, x_{N}$ be the standard coordinate functions on \mathbb{R}^{N}, and let X be a k dimensional manifold in \mathbb{R}^{N}. Prove that every point $p \in X$ has a neighborhood on which the restrictions of some k-coordinate functions $x_{j_{1}}, x_{j_{2}}, \ldots, x_{j_{k}}$ form a local coordinate system. (Hint. Let $e_{1}, e_{2}, \ldots, e_{N}$ be the usual basis for \mathbb{R}^{N}. First, prove that there are k directions $e_{j_{1}}, e_{j_{2}}, \ldots, e_{j_{k}}$ such that the projection from \mathbb{R}^{N} onto the subspace spanned by $e_{j_{1}}, e_{j_{2}}, \ldots, e_{j_{k}}$ is a linear isomorphism when restricted on $T_{p} X$. Then invoke the inverse function theorem.)
(b) For simplicity, assume that $x_{1}, x_{2}, \ldots, x_{k}$ form a local coordinate on a neighborhood V of $p \in X$. Show that there are $(N-k)$ smooth functions $g_{k+1}, g_{k+2}, \ldots, g_{N}$ on some open set U in \mathbb{R}^{k} such that V may be taken to be the set

$$
\left\{\left(x_{1}, \ldots, x_{k}, g_{k+1}(x), \ldots, g_{N}(x)\right) \in \mathbb{R}^{N} \mid x=\left(x_{1}, \ldots, x_{k}\right) \in U\right\}
$$

That is to say, every manifold can locally expressed as a graph.
(2) (a) If $f: X \rightarrow Y$ is a submersion and $U \subset X$ is an open subset, show that $f(U)$ is open in Y. (Hint. Suppose that $V \subset \mathbb{R}^{k}$ is open. Then, for any $p \in V$, there exists an open neighborhood of $p \in V$ which is a product of open intervals.)
(b) If X is compact and Y is connected, prove that every submersion $f: X \rightarrow Y$ is surjective. (Hint. It suffices to prove that $f(X)$ is both open and closed in Y.)
(c) Show that there exists no submersions of compact manifolds into Euclidean spaces.
(3) (a) Check that 0 is the only critical value of the map

$$
\begin{array}{cccc}
f: & \mathbb{R}^{3} & \rightarrow & \mathbb{R}^{1} \\
& (x, y, z) & \mapsto & x^{2}+y^{2}-z^{2}
\end{array}
$$

(b) Show that if a and b satisfy $a b>0$, then $f^{-1}(a)$ and $f^{-1}(b)$ are diffeomorphic.
(c) Draw its picture to understand the catastrophic change in the topology of $f^{-1}(c)$ as c passes from negative to positive values.
(4) Let $X \xrightarrow{f} Y \xrightarrow{g} Z$ be a sequence of smooth maps of manifolds. Suppose that g is transversal to a submanifold W of Z. Prove that $f \pitchfork g^{-1}(W)$ if and only if $(g \circ f) \pitchfork W$.
(5) Let $V=\mathbb{R}^{k}$ be the k-dimensional Euclidean space, and let \triangle be the diagonal of $V \times V$. For a linear map $A: V \rightarrow V$, consider the graph $\Gamma_{A}=\{(v, A v) \in V \times V \mid v \in V\}$. Show that $\Gamma_{A} \pitchfork \triangle$ if and only if +1 is not an eigenvalue of A.

