DIFFERENTIAL TOPOLOGY HOMEWORK 1

DUE: MONDAY, FEBRUARY 24

The following exercises are taken from [GP].

- (1) Let $X \subset \mathbb{R}^N$, $Y \subset \mathbb{R}^M$, $Z \subset \mathbb{R}^L$ be arbitrary subsets. Let $f: X \to Y$ and $g: Y \to Z$ be smooth maps. Check that the composition map $g \circ f: X \to Z$ is smooth.
- (2) Let $B_a = \{ \mathbf{x} \in \mathbb{R}^k \mid |\mathbf{x}| < a \}$, where a is some positive number. Show that the map

$$\mathbf{x} \mapsto \frac{a\mathbf{x}}{\sqrt{a^2 - |\mathbf{x}|^2}}$$

is a diffeomorphism of B_a onto \mathbb{R}^k .

- (3) Give a smooth map $f : \mathbb{R}^1 \to \mathbb{R}^1$ which is one-to-one and onto but is *not* a diffeomorphism.
- (4) The graph of a smooth map $f: X \to Y$ is defined by

$$graph(f) = \{(x, f(x)) \subset X \times Y \mid x \in X\}.$$

There is a natural smooth map $F: X \to \operatorname{graph}(f) \subset X \times Y$ defined by F(x) = (x, f(x)). Show that if f is smooth, then F is a diffeomorphism. Hence, $\operatorname{graph}(f)$ is a manifold if X is.

- (5) Let a > 0 be a positive number.
 - (a) Check that the hyperboloid in \mathbb{R}^3 defined by $x^2 + y^2 z^2 = a$ is a manifold.
 - (b) Describe the tangent space to the hyperboloid $x^2 + y^2 z^2 = a$ at $(\sqrt{a}, 0, 0)$.
 - (c) Why doesn't $x^2 + y^2 z^2 = 0$ define a manifold?
- (6) The purpose of this exercise is to construct a very useful function, the *cut-off* function.
 (a) Consider the function ψ : ℝ¹ → ℝ¹ defined by

$$\psi(x) = \begin{cases} \exp(-\frac{1}{x^2}) & \text{if } x > 0 \\ 0 & \text{if } x \le 0 \end{cases}$$

Check that ψ is smooth.

(b) Show that $\varphi(x) = \psi(x - a)\psi(b - x)$ is a smooth function, positive on (a, b) and zero elsewhere. (Here a < b.)

With the function φ ,

$$\chi(x) = \frac{\int_{-\infty}^{x} \varphi(t) dt}{\int_{-\infty}^{\infty} \varphi(t) dt}$$

is a smooth function satisfying $\chi(x) = 0$ for $x \le a$, $\chi(x) = 1$ for $x \ge b$, and $0 < \chi(x) < 1$ for $x \in (a, b)$.