DIFFERENTIAL GEOMETRY I HOMEWORK 14

DUE: WEDNESDAY, DECEMBER 31

(1) Let $P \to M$ be a principal O(k)-bundle. Let ρ be the standard representation of O(k) on \mathbb{R}^k , namely, $\rho : O(k) \to Gl(k; \mathbb{R})$ is the inclusion map. Prove that $E = P \times_{\rho} \mathbb{R}^k$ naturally carries a bundle metric whose orthonormal frame bundle¹ is exactly P. [*Hint*: It is always true locally.]

Remark 1: Different Lie group G corresponds to different (fiberwise) geometric structure. Here are some examples.

- $\operatorname{Gl}_+(k;\mathbb{R}) = \{\mathfrak{m} \in \operatorname{Gl}(k;\mathbb{R}) \mid \det \mathfrak{m} > 0\}$: orientation.
- $Sl(k; \mathbb{R})$: fiberwise determinant (a nonwhere vanishing section of $\Lambda^k E^*$)
- SO(k): metric and fiberwise determinant.
- $Gl(k; \mathbb{C})$: almost complex structure.
- U(k): Hermitian metric.
- SU(k): Hermitian metric and complex determinant².

The story is quite interesting for exceptional Lie groups.

Remark 2: You can compare this exercise with (4) and (5) of Homework 13.

- (2) Let G be a connected Lie group. Prove that any principal G-bundle over \mathbf{S}^1 is isomorphic to the trivial bundle, $\mathbf{S}^1 \times G$. [*Hint*: It is true over any open arc of \mathbf{S}^1 . Also, it suffices to construct a global section to show that a principal G-bundle is trivial.]
- (3) Consider the 1-form A = dz + x dy on \mathbb{R}^3 . Since A is nowhere vanishing, $H_A = \ker A$ is a rank 2 subbundle of $T\mathbb{R}^3$. Is H_A involutive?
- (4) Consider the trivial \mathbb{C}^1 -bundle over \mathbb{R}^2 , $\mathbb{R}^2 \times \mathbb{C}^1$ with the covariant derivative $\nabla = d + i(x \, dy y \, dx)$.
 - (a) Calculate the curvature F_{∇} .
 - (b) For any $\tau > 0$, the parallel transport along the continuous, piecewise smooth loop $(0,0) \to (0,\tau^{\frac{1}{2}}) \to (\tau^{\frac{1}{2}},\tau^{\frac{1}{2}}) \to (\tau^{\frac{1}{2}},0) \to (0,0)$ defines an element $h_{\tau} \in \operatorname{End}(\mathbb{C}) \cong \mathbb{C}$. Compute h_{τ} and $\frac{dh_{\tau}}{d\tau}|_{\tau=0}$.

¹Namely, replace each fiber of E by the set of all orthonormal bases.

²Remember that $|\det \mathfrak{m}_{\mathbb{C}}|^2 = \det \mathfrak{m}$