DIFFERENTIAL GEOMETRY I HOMEWORK 13

DUE: WEDNESDAY, DECEMBER 24

The purpose of this homework set is to study certain covariant derivative for $T\mathbf{S}^3$ and the corresponding connection on its oriented, orthonormal frame bundle.

- Consider $\mathbf{S}^3 = \{(x, y, z, w) \in \mathbb{R}^4 \mid x^2 + y^2 + z^2 + w^2 = 1\}$. Given a smooth function $f : \mathbf{S}^3 \to \mathbb{R}$, extend it to a smooth function on $\mathbb{R}^4 \setminus \{0\}$ by $\tilde{f}(\mathbf{x}) = f(\mathbf{x}/|\mathbf{x}|)$. We already know that $df = (d\tilde{f})|_{\mathbf{S}^3}$. With this understood, it is more convenient to calculate the exterior derivative in \mathbb{R}^4 , and then restrict the output on \mathbf{S}^3 . Taking the restriction is tantamount to imposing the condition that $x \, dx + y \, dy + z \, dz + w \, dw = 0$.
- The tangent bundle of the three dimensional sphere is trivial. This is true only for spheres in some special dimensions. Let

$$\mathbf{e}_1 = (-y, x, -w, z)$$
, $\mathbf{e}_2 = (-z, w, x, -y)$, $\mathbf{e}_3 = (-w, -z, y, x)$.

They constitute an oriented, orthonormal frame for $T\mathbf{S}^3$.

• The dual coframe provides a trivialization for the cotangent bundle. It consists of

$$\sigma^{1} = (-y \,\mathrm{d}x + x \,\mathrm{d}y - w \,\mathrm{d}z + z \,\mathrm{d}w)|_{\mathbf{S}^{3}} ,$$

$$\sigma^{2} = (-z \,\mathrm{d}x + w \,\mathrm{d}y + x \,\mathrm{d}z - y \,\mathrm{d}w)|_{\mathbf{S}^{3}} ,$$

$$\sigma^{3} = (-w \,\mathrm{d}x - z \,\mathrm{d}y + y \,\mathrm{d}z + x \,\mathrm{d}w)|_{\mathbf{S}^{3}} .$$

By the same computation as that in the midterm,

$$\mathrm{d}\sigma^1 = 2\,\sigma^2 \wedge \sigma^3 \;, \qquad \qquad \mathrm{d}\sigma^2 = 2\,\sigma^3 \wedge \sigma^1 \;, \qquad \qquad \mathrm{d}\sigma^3 = 2\,\sigma^1 \wedge \sigma^2 \;.$$

• For any 3×3 -matrix \mathfrak{m} , let $\tilde{\mathfrak{m}}$ be the following 4×4 -matrix

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & & & \\ 0 & & & \\ 0 & & & \end{bmatrix} .$$

• It follows that SO(4) is a *trivial* principal SO(3)-bundle over S^3 . What follows is an explicit isomorphism:

$$F: \quad \mathbf{S}^{3} \times \mathrm{SO}(3) \quad \longrightarrow \quad \mathrm{SO}(4)$$
$$((x, y, z, w), g) \quad \longmapsto \quad \begin{bmatrix} x & -y & -z & -w \\ y & x & w & -z \\ z & -w & x & y \\ w & z & -y & x \end{bmatrix} \tilde{g} \ .$$
$$1$$

- The tangent bundle of S³ is the associated bundle of SO(4) with the standard representation of SO(3) on ℝ⁴. That is to say, ρ: SO(3) → Gl(3; ℝ) is the inclusion map, and ρ_{*} : so(3) → M(3; ℝ) is also the inclusion map. The space so(3) is the Lie algebra of SO(3), which consists of skew-symmetric 3 × 3-matrices.
- Any tangent vector field on \mathbf{S}^3 can be expressed as $\sum_{j=1}^3 \psi^j \mathbf{e}_j$ where ψ^1, ψ^2, ψ^3 are smooth functions on \mathbf{S}^3 . We can put them into a column vector, and denote it by ψ . With the identification F, the vector field ψ corresponds to the following SO(3)-equivariant map from $\mathbf{S}^3 \times SO(3)$ to \mathbb{R}^3 :

$$((x, y, z, w), g) \xrightarrow{\Psi} g^{-1}\psi$$
.

Clearly, Ψ obeys that $\Psi(\cdot, gh^{-1}) = h \Psi(\cdot, g)$.

- (1) For any vector field v, $(\Pi \circ d)(v)$ defines a covariant derivative for $T\mathbf{S}^3$. Here, Π is the orthogonal projection from $\mathbf{S}^3 \times \mathbb{R}^4$ onto $T\mathbf{S}^3$. With respect to the trivialization given by $\{\mathbf{e}_j\}$, the covariant derivative can be expressed as $d + \mathfrak{a}$ where \mathfrak{a} is a 3×3 -matrix with entries being 1-forms. Find out \mathfrak{a} .
- (2) Calculate the curvature of the covariant derivative in part (1). Your answer shall be a 3×3 -matrix whose entries are 2-forms.
- (3) Let

$$q = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \ .$$

For $p \in SO(4)$, $A = q p^T dp q^T$ defines a $\mathfrak{so}(3)$ -valued 1-form on SO(4). Show the covariant derivative for $T\mathbf{S}^3$ induced by A coincides with the one defined in part (1).

(4) Let \langle , \rangle be the Riemannian metric induced by the standard inner product of \mathbb{R}^4 . Denote by ∇ the covariant derivative defined in part (1). Check that

$$d\langle\psi,\varphi\rangle = \langle\nabla\psi,\varphi\rangle + \langle\psi,\nabla\varphi\rangle \tag{(\star)}$$

for any two vector fields ψ and φ .

- (5) Bonus Is (*) true for any covariant derivative for TS^3 ? How about the covariant derivative induced from a $\mathfrak{so}(3)$ -connection?
- (6) Let M be a smooth manifold. Suppose that v and u are two vector fields on M, and α is a 1-form on M. Prove that

$$(\mathrm{d}\alpha)(v,u) = v(\alpha(u)) - u(\alpha(v)) - \alpha([v,u]) \; .$$

[*Hint*: Compute them in terms of local coordiantes.]