# DIFFERENTIAL GEOMETRY I HOMEWORK 13 

DUE: WEDNESDAY, DECEMBER 24

The purpose of this homework set is to study certain covaraint derivative for $T \mathbf{S}^{3}$ and the corresponding connection on its oriented, orthonormal frame bundle.

- Consider $\mathbf{S}^{3}=\left\{(x, y, z, w) \in \mathbb{R}^{4} \mid x^{2}+y^{2}+z^{2}+w^{2}=1\right\}$. Given a smooth function $f: \mathbf{S}^{3} \rightarrow \mathbb{R}$, extend it to a smooth function on $\mathbb{R}^{4} \backslash\{0\}$ by $\tilde{f}(\mathbf{x})=f(\mathbf{x} /|\mathbf{x}|)$. We already know that $\mathrm{d} f=\left.(\mathrm{d} \tilde{f})\right|_{\mathbf{S}^{3}}$. With this understood, it is more convenient to calculate the exterior derivative in $\mathbb{R}^{4}$, and then restrict the output on $\mathbf{S}^{3}$. Taking the restriction is tantamount to imposing the condition that $x \mathrm{~d} x+y \mathrm{~d} y+z \mathrm{~d} z+w \mathrm{~d} w=0$.
- The tangent bundle of the three dimensional sphere is trivial. This is true only for spheres in some special dimensions. Let

$$
\mathbf{e}_{1}=(-y, x,-w, z), \quad \mathbf{e}_{2}=(-z, w, x,-y), \quad \mathbf{e}_{3}=(-w,-z, y, x)
$$

They constitute an oriented, orthonormal frame for $T \mathbf{S}^{3}$.

- The dual coframe provides a trivialization for the cotangent bundle. It consists of

$$
\begin{aligned}
\sigma^{1} & =\left.(-y \mathrm{~d} x+x \mathrm{~d} y-w \mathrm{~d} z+z \mathrm{~d} w)\right|_{\mathbf{S}^{3}}, \\
\sigma^{2} & =\left.(-z \mathrm{~d} x+w \mathrm{~d} y+x \mathrm{~d} z-y \mathrm{~d} w)\right|_{\mathbf{S}^{3}}, \\
\sigma^{3} & =\left.(-w \mathrm{~d} x-z \mathrm{~d} y+y \mathrm{~d} z+x \mathrm{~d} w)\right|_{\mathbf{S}^{3}} .
\end{aligned}
$$

By the same computation as that in the midterm,

$$
\mathrm{d} \sigma^{1}=2 \sigma^{2} \wedge \sigma^{3}, \quad \mathrm{~d} \sigma^{2}=2 \sigma^{3} \wedge \sigma^{1}, \quad \mathrm{~d} \sigma^{3}=2 \sigma^{1} \wedge \sigma^{2}
$$

- For any $3 \times 3$-matrix $\mathfrak{m}$, let $\tilde{\mathfrak{m}}$ be the following $4 \times 4$-matrix

$$
\left[\begin{array}{c|ccc}
1 & 0 & 0 & 0 \\
\hline 0 & & & \\
0 & & \mathfrak{M} & \\
0 & & &
\end{array}\right]
$$

- It follows that $\mathrm{SO}(4)$ is a trivial principal $\mathrm{SO}(3)$-bundle over $\mathbf{S}^{3}$. What follows is an explicit isomorphism:

$$
\begin{aligned}
F: \quad \mathbf{S}^{3} \times \mathrm{SO}(3) & \longrightarrow \mathrm{SO}(4) \\
((x, y, z, w), g) & \longmapsto\left[\begin{array}{cccc}
x & -y & -z & -w \\
y & x & w & -z \\
z & -w & x & y \\
w & z & -y & x
\end{array}\right] \tilde{g} .
\end{aligned}
$$

- The tangent bundle of $\mathbf{S}^{3}$ is the associated bundle of $\mathrm{SO}(4)$ with the standard representation of $\mathrm{SO}(3)$ on $\mathbb{R}^{4}$. That is to say, $\rho: \mathrm{SO}(3) \rightarrow \mathrm{Gl}(3 ; \mathbb{R})$ is the inclusion map, and $\rho_{*}: \mathfrak{s o}(3) \rightarrow$ $\mathbb{M}(3 ; \mathbb{R})$ is also the inclusion map. The space $\mathfrak{s o}(3)$ is the Lie algebra of $\operatorname{SO}(3)$, which consists of skew-symmetric $3 \times 3$-matrices.
- Any tangent vector field on $\mathbf{S}^{3}$ can be expressed as $\sum_{j=1}^{3} \psi^{j} \mathbf{e}_{j}$ where $\psi^{1}, \psi^{2}, \psi^{3}$ are smooth functions on $\mathbf{S}^{3}$. We can put them into a column vector, and denote it by $\psi$. With the identification $F$, the vector field $\psi$ corresponds to the following $\mathrm{SO}(3)$-equivariant map from $\mathbf{S}^{3} \times \mathrm{SO}(3)$ to $\mathbb{R}^{3}$ :

$$
((x, y, z, w), g) \stackrel{\Psi}{\longleftrightarrow} g^{-1} \psi .
$$

Clearly, $\Psi$ obeys that $\Psi\left(\cdot, g h^{-1}\right)=h \Psi(\cdot, g)$.
(1) For any vector field $v,(\Pi \circ \mathrm{~d})(v)$ defines a covariant derivative for $T \mathbf{S}^{3}$. Here, $\Pi$ is the orthogonal projection from $\mathbf{S}^{3} \times \mathbb{R}^{4}$ onto $T \mathbf{S}^{3}$. With respect to the trivialization given by $\left\{\mathbf{e}_{j}\right\}$, the covariant derivative can be expressed as $d+\mathfrak{a}$ where $\mathfrak{a}$ is a $3 \times 3$-matrix with entries being 1 -forms. Find out $\mathfrak{a}$.
(2) Calculate the curvature of the covariant derivative in part (1). Your answer shall be a $3 \times 3$-matrix whose entries are 2 -forms.
(3) Let

$$
q=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

For $p \in \mathrm{SO}(4), A=q p^{T} \mathrm{~d} p q^{T}$ defines a $\mathfrak{s o}(3)$-valued 1-form on $\mathrm{SO}(4)$. Show the covariant derivative for $T \mathbf{S}^{3}$ induced by $A$ coincides with the one defined in part (1).
(4) Let $\langle$,$\rangle be the Riemannian metric induced by the standard inner product of \mathbb{R}^{4}$. Denote by $\nabla$ the covariant derivative defined in part (1). Check that

$$
\mathrm{d}\langle\psi, \varphi\rangle=\langle\nabla \psi, \varphi\rangle+\langle\psi, \nabla \varphi\rangle
$$

for any two vector fields $\psi$ and $\varphi$.
(5) Bonus Is $\sqrt{\star}$ ) true for any covariant derivative for $T \mathbf{S}^{3}$ ? How about the covariant derivative induced from a $\mathfrak{s o}(3)$-connection?
(6) Let $M$ be a smooth manifold. Suppose that $v$ and $u$ are two vector fields on $M$, and $\alpha$ is a 1-form on $M$. Prove that

$$
(\mathrm{d} \alpha)(v, u)=v(\alpha(u))-u(\alpha(v))-\alpha([v, u]) .
$$

[Hint: Compute them in terms of local coordiantes.]

