DIFFERENTIAL GEOMETRY I HOMEWORK 12

DUE: WEDNESDAY, DECEMBER 17

The purpose of this homework set is to study the covariant derivative of some associated bundles of $\mathbf{S}^{1} \rightarrow \mathrm{SU}(2) \rightarrow \mathbf{S}^{2}$.

- The Lie group G here is $\mathbf{S}^{1} \equiv \mathrm{U}(1)$. Its Lie algebra is the space of skew-Hermitian, 1×1 matrices, namely, $i \mathbb{R}$. The exponential map sends it to $e^{i t}=\cos t+i \sin t$.
- Regard \mathbf{S}^{1} as a subgroup of $\operatorname{SU}(2)$ by

$$
e^{i t} \longmapsto\left[\begin{array}{cc}
e^{i t} & 0 \tag{0.1}\\
0 & e^{-i t}
\end{array}\right]
$$

The convention of the action of $e^{i t} \in \mathbf{S}^{1}$ on $\mathrm{SU}(2)$ is to multiply the inverse of the above matrix on the right.

- The Hopf fibration is explained in Homework 11. Identify $(x, y, z) \in \mathbb{R}^{3}$ with $\left[\begin{array}{cc}i z & -x+i y \\ x+i y & -i z\end{array}\right]$. The fibration map is given by

$$
\begin{align*}
\pi: \mathrm{SU}(2) & \longrightarrow \mathrm{S}^{2} \subset \mathbb{R}^{3} \\
\mathfrak{m} & \longmapsto \mathfrak{m}\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right] \mathfrak{m}^{*} . \tag{0.2}
\end{align*}
$$

In other words, it is the image of $(0,0,1)$ under the adjoint representation of $\operatorname{SU}(2)$.

- Consider the stereographic projection of \mathbf{S}^{2} :

$$
\begin{align*}
& \left(u_{1}, u_{2}\right) \in \mathbb{R}^{2} \xrightarrow{\varphi_{U}}\left(\frac{2 u_{1}}{1+|\mathbf{u}|^{2}}, \frac{2 u_{2}}{1+|\mathbf{u}|^{2}}, \frac{1-|\mathbf{u}|^{2}}{1+|\mathbf{u}|^{2}}\right) \in \mathcal{U}=\mathbf{S}^{2} \backslash\{(0,0,-1)\} \\
& \left(v_{1}, v_{2}\right) \in \mathbb{R}^{2} \xrightarrow{\varphi_{\nu}}\left(\frac{2 v_{1}}{1+|\mathbf{v}|^{2}}, \frac{-2 v_{2}}{1+|\mathbf{v}|^{2}}, \frac{-1+|\mathbf{v}|^{2}}{1+|\mathbf{v}|^{2}}\right) \in \mathcal{V}=\mathbf{S}^{2} \backslash\{(0,0,1)\} \tag{0.3}
\end{align*}
$$

where $\mathbf{u}=u_{1}+i u_{2}$ and $\mathbf{v}=v_{1}+i v_{2}$. With the minus sign in front of v_{2}, the Jacobian matrix has positive determinant. In terms of complex coordinate, the coordinate change is

$$
\begin{equation*}
\mathbf{v}=\frac{1}{\mathbf{u}} \tag{0.4}
\end{equation*}
$$

- To find the bundle transition function $g \mathcal{V}, \mathcal{U}: \mathcal{U} \cap \mathcal{V} \rightarrow \mathbf{S}^{1}$, we have to construct local trivializations of $\pi: \mathrm{SU}(2) \rightarrow \mathbf{S}^{2}$ over \mathcal{U} and \mathcal{V}. The first step is to construct a section. For instance, we can take

$$
\frac{1}{\sqrt{1+|\mathbf{u}|^{2}}}\left[\begin{array}{cc}
i & -\overline{\mathbf{u}} \tag{0.5}\\
\mathbf{u} & -i
\end{array}\right]
$$

over \mathcal{U}. You can check that its image under π is exactly $\varphi \mathcal{U}(\mathbf{u})$, and hence does define a section over \mathcal{U}. Then, we have

$$
\begin{align*}
\mathbb{R}^{2} \times \mathbf{S}^{1} & \longrightarrow \pi^{-1}(\mathcal{U}) \subset \operatorname{SU}(2) \\
\left(\mathbf{u}, e^{i \alpha}\right) & \longmapsto \frac{1}{\sqrt{1+\mid \mathbf{u}^{2}}}\left[\begin{array}{cc}
i & -\overline{\mathbf{u}} \\
\mathbf{u} & -i
\end{array}\right]\left[\begin{array}{cc}
e^{i \alpha} & 0 \\
0 & e^{-i \alpha}
\end{array}\right]=\frac{1}{\sqrt{1+|\mathbf{u}|^{2}}}\left[\begin{array}{ll}
i e^{i \alpha} & -\overline{\mathbf{u}} e^{-i \alpha} \\
\mathbf{u} e^{i \alpha} & -i e^{-i \alpha}
\end{array}\right] . \tag{0.6}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\mathbb{R}^{2} \times \mathbf{S}^{1} & \longrightarrow \pi^{-1}(\mathcal{V}) \subset \operatorname{SU}(2) \\
\left(\mathbf{v}, e^{i \beta}\right) & \longmapsto \tag{0.7}\\
\sqrt{1+|\mathbf{v}|^{2}} & {\left[\begin{array}{cc}
i \mathbf{v} e^{i \beta} & -e^{-i \beta} \\
e^{i \beta} & -i \overline{\mathbf{v}} e^{-i \beta}
\end{array}\right] . }
\end{align*}
$$

It follows that

$$
\begin{equation*}
e^{i \beta}=\frac{\sqrt{1+|\mathbf{v}|^{2}}}{\sqrt{1+|\mathbf{u}|^{2}}} \mathbf{u} e^{i \alpha}=\frac{\mathbf{u}}{|\mathbf{u}|} e^{i \alpha} \tag{0.8}
\end{equation*}
$$

In other words,

$$
\begin{equation*}
g_{\mathcal{V}, \mathcal{U}}=\frac{\mathbf{u}}{|\mathbf{u}|} \tag{0.9}
\end{equation*}
$$

of the above trivializations.

- For any non-negative integer k, let ρ_{k} be the representation $\rho_{k}\left(e^{i t}\right)=e^{-i k t} \in \operatorname{Gl}(1 ; \mathbb{C})$. Denote by L_{k} the associated vector bundle $\mathrm{SU}(2) \times \rho_{k} \mathbb{C}$ over \mathbf{S}^{2}. The bundle transition function for L_{k} is

$$
\begin{equation*}
\rho_{k} \circ g_{\mathcal{V}, \mathcal{U}}=\frac{|\mathbf{u}|^{k}}{\mathbf{u}^{k}} \quad(\text { from } \mathcal{U} \text { to } \mathcal{V}) . \tag{0.10}
\end{equation*}
$$

(1) In terms of local trivializations, sections of L_{k} are nothing more than \mathbb{C}-valued functions on \mathcal{U} and \mathcal{V} that satisfy the bundle transition 0.10 . Show that

$$
\begin{equation*}
\mathrm{d}+\frac{k}{2} \frac{\mathbf{u d} \overline{\mathbf{u}}-\overline{\mathbf{u}} \mathrm{d} \mathbf{u}}{1+|\mathbf{u}|^{2}} \quad \text { over } \mathcal{U} \tag{0.11}
\end{equation*}
$$

can be extended as a covariant derivative of $L_{k} \rightarrow \mathbf{S}^{2}$. Here, the differential of a complex valued function $f+i g$ is $\mathrm{d} f+i \mathrm{~d} g$. Also, write down the covariant derivative over \mathcal{V}.
(2) We may write an element $\mathfrak{m} \in \mathrm{SU}(2)$ as $\left[\begin{array}{cc}\mathbf{z} & -\overline{\mathbf{w}} \\ \mathbf{w} & \overline{\mathbf{z}}\end{array}\right]$ for $(\mathbf{z}, \mathbf{w}) \in \mathbb{C}^{2}$ and $|\mathbf{z}|^{2}+|\mathbf{w}|^{2}=1$. For any integer j with $0 \leq j \leq k$, check that $\mathfrak{s}_{j, k}: \mathrm{SU}(2) \rightarrow \mathbb{C}$ that sends \mathfrak{m} to $\mathbf{z}^{j} \mathbf{w}^{k-j}$ defines a section of L_{k}.
(3) Work out the map $\psi: P \times \mathfrak{l i e}(G)=\mathrm{SU}(2) \times i \mathbb{R} \rightarrow \operatorname{ker} \pi_{*} \subset T P$. You may write $\mathbf{z}=x_{1}+i x_{2}$ and $\mathbf{w}=x_{3}+i x_{4}$. Then express $\psi(\mathfrak{m}, i t)$ as a vector in \mathbb{R}^{4} which is perpendicular to $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$.
(4) A connection on P is a linear map A from $T P$ to $\mathfrak{l i e}(G)$. In the current case, it is a purely-imaginary valued 1-form on $P=\mathrm{SU}(2)$. Check that

$$
\begin{align*}
A & =\frac{1}{2} \operatorname{tr}\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \mathfrak{m}^{*} \mathrm{~d} \mathfrak{m}\right) \\
& =\left.\frac{1}{2}(\overline{\mathbf{z}} \mathrm{~d} \mathbf{z}-\mathbf{z d} \overline{\mathbf{z}}+\overline{\mathbf{w}} \mathrm{d} \mathbf{w}-\mathbf{w} \mathrm{d} \overline{\mathbf{w}})\right|_{\mathbf{S}^{3}} \tag{0.12}\\
& =\left.i\left(-x_{2} \mathrm{~d} x_{1}+x_{1} \mathrm{~d} x_{2}-x_{4} \mathrm{~d} x_{3}+x_{3} \mathrm{~d} x_{4}\right)\right|_{\mathbf{S}^{3}}
\end{align*}
$$

does define a connection on $\mathrm{SU}(2) \rightarrow \mathbf{S}^{2}$. You have to check those two conditions in $[\mathrm{T}$; $\S 11.4 .4]$. For the first condition, it is a straightforward computation by using part (3). For the second condition, note that G is abelian here.
(5) A section of L_{k} can be expressed as two smooth functions $s_{1}(\mathbf{u})$ and $s_{2}(\mathbf{v})$ that satisfy the bundle transition 0.10 . Consider

$$
\begin{aligned}
& \mathfrak{s}_{1}: \mathbb{R}^{2} \times \mathbf{S}^{1} \\
&\left(\mathbf{u}, e^{i \alpha}\right) \longmapsto \mathbb{C} \\
& e^{i k \alpha} s_{1}(\mathbf{u})
\end{aligned} \quad \text { and } \quad \begin{array}{rlll}
\mathfrak{s}_{2}: & \mathbb{R}^{2} \times \mathbf{S}^{1} & \longrightarrow \mathbb{C} \\
\left(\mathbf{v}, e^{i \beta}\right) & \longmapsto e^{i k \beta} s_{2}(\mathbf{v})
\end{array}
$$

With (0.6, 0.7) and (0.9, \mathfrak{s}_{1} and \mathfrak{s}_{2} together define a smooth function on $\mathrm{SU}(2)$, and correspond to the section of L_{k} given by s_{1} and s_{2}. Work out the covariant derivative of s_{1} by using \mathfrak{s}_{1} and A (see 0.12), and show that it coincides with 0.11. It suffices to figure out $\nabla \frac{\partial}{\partial u_{1}} s_{1}$ and $\nabla_{\frac{\partial}{\partial u_{2}}} s_{1}$.

