
DIFFERENTIAL GEOMETRY I

HOMEWORK 10

DUE: WEDNESDAY, DECEMBER 3

Lie Derivative of Vector Fields

Commutator of derivations. Suppose that U and V are two vector fields on M . Consider their

Lie bracket

[U, V ] := UV − V U . (a)

The equation is understood as an operator on C∞(M ;R). Remember that a vector field U acts on

a smooth function f by U(f) = (df)(U).

(i) Check that [U, V ] is still a derivation. It is clear that the operator is linear over R, and it

suffices to check the Leibniz property.

(ii) It follows that [U, V ] is still a vector field. On a coordinate chart, U and V can be

expressed as
∑

i u
i(x) ∂

∂xi
and

∑
i v
i(x) ∂

∂xi
, respectively. Work out the expression of [U, V ]

on the coordinate chart.

(iii) It follows from the definition that [U, V ] = −[V,U ]. Check that the Lie bracket obeys the

Jacobi identity, namely,

[U, [V,W ]] + [W, [U, V ]] + [V, [W,U ]] = 0 . (b)

[Hint : It is a direct computation in terms of a local coordinate.]

(iv) (You shall check the following property yourself, but you don’t have to submit this part.)

Suppose that there is a diffeomorphism ψ : M → N . In general, the push-forward map ψ∗

sends a vector field on M to a section of ψ∗TN (see [T; §5.3]). When ψ is a diffeomorphism,

we can think that ψ∗ sends a vector field on M to a vector field on N . With this understood,

ψ∗([U, V ]) = [ψ∗U,ψ∗V ] . (c)

[Hint : In terms of a local coordinate, it is nothing more than the chain rule.]

Lie derivative of vector fields. Given a vector field U on M , it associates a one-parameter

family of self-diffeomorphisms ψt of M defined by

dψt
dt

= U (or more precisely,
dψt(p)

dt
= U |ψt(p) for any p ∈M)

with ψ0 to be the identity map. On a coordinate chart, ψt = (ψ1
t (x), . . . , ψnt (x)) is the solution of

dψjt (x)

dt
= uj(ψt(x)) with ψ0(x) = x . (d)
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By the fundamental theorem of O.D.E., there exists ε > 0 such that the solution exists for t ∈
(−ε, ε), and is smooth in x. It follows from the uniqueness of the solution for an O.D.E. that

ψt1 ◦ ψt2 = ψt1+t2 . Therefore, when M is compact, ψt(x) can be defined for any t ∈ R. And the

inverse map of ψt is ψ−t. It justifies the name of one-parameter family of self-diffeomorphisms.

(v) Find out the one-parameter family of diffeomorphisms generated by −y ∂
∂x

+ x
∂

∂y
on R2.

(vi) Let ψt be the one-parameter family of diffeomorphisms generated by a vector field U . The

Lie derivative of V with respect to U is defined as follows

(LUV )|p = lim
t→0

(ψ−t)∗(V |ψt(p))− V |p
t

=
d

dt

∣∣
t=0

(
(ψ−t)∗(V |ψt(p))

)
(e)

where the first term in the enumerator means the push-forward of V |ψt(p) by ψ−t. Since

ψ−t(ψt(p)) = p, (ψ−t)∗(V |ψt(p)) is a tangent vector at p, and (LUV )|p is the derivative of a

map from (−ε, ε) to the vector space TpM . Show that LUV = [U, V ]. [Hint : In terms

of a local coordinate, (ψ−t)∗(V |ψt(p)) is vi(ψt(p))
∂ψj−t
∂xi

∣∣∣
p

∂

∂xj
. The Lie derivative (e) can be found

by differentiating the coefficient functions with respect to t and evaluating at t = 0. You shall use

the defining equation (d) of ψt.]

Revisiting the Jacobi identity.

(vii) Let ψt be the one-parameter family of diffeomorphisms generated by a vector field U . Apply

part (iv) and (vi) to give another proof for the Jacobi identity (b). [Hint : Differentiate

(ψ−t)∗([V,W ]) = [(ψ−t)∗V, (ψ−t)∗W ] with respect to t.]

Lie group and Lie algebra

Let G be a Lie group, and g be its tangent space at the identity. There is a one-to-one corre-

spondence between vectors in g and left-invariant vector fields on G. Due to (c), the Lie bracket

between two left-invariant vector fields is still left-invariant. Therefore, the Lie bracket induces a

binary operation [ , ] : g× g→ g.

Definition. A Lie algebra (over R) is a vector space together with a binary operation which is

bilinear and satisfies the Jacobi identity (b). The tangent space at the identity of a Lie group is an

example of a Lie algebra.

Example. The space R3 with the standard cross product constitutes a Lie algebra. In fact, it is

isomorphic to the Lie algebra of SO(3).
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(viii) Consider G = Gl(n;R) and g = M(n;R). For any a, b ∈ M(n;R), check that their Lie

bracket coincides with the usual matrix bracket. [Hint : Let mij be the standard coor-

dinate for the space of n × n-matrices. The vector a corresponds to the left-invariant vector field

tr(aTmT ∂
∂m ) = ajimkj

∂
∂mki

. Note that at the identity mkj = δkj , tr(aTmT ∂
∂m ) = aji

∂
∂mji

. The

bracket can be computed directly from the coordinate expression.]

Remark. If one uses right-invariant vector fields to construct the Lie bracket on g, it differs from

the left-invariant one by a minus sign. These two Lie algebras are isomorphic to each other. The

isomorphism is given by the differential of the inverse map, g 7→ g−1, at the identity. Since the

bracket of the left-invariant construction coincides with the matrix bracket, the usual convention

is the left-invariant one.

Exponential map on a Lie group. On a Lie group G, the exponential map exp : g → G is

defined as follows. For any a ∈ g, let A be the left-invariant vector field corresponding to a. That

is to say, A|g = (`g)∗a ∈ TgG. Let ψt be the one-parameter family of diffeomorphisms generated

by the vector field A. The exponential of a is defined to be ψ1(I), and is usually denoted by ea.

Namely, flow the identity along ψt for time 1.

It follows that eta satisfies

d

dt
eta = (`eta)∗a ∈ TetaG . (f)

By the uniqueness of the solution for an O.D.E., this equation characterizes eta. Recall that for

matrix groups, we checked that the matrix exponential map obeys (f). Hence, the two definitions

for the exponential map coincide for matrix groups.

(ix) Find the expression of ψt(g) in terms of g and eta. [Hint : Intuitively, it should be either

geta or etag.]
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