DIFFERENTIAL GEOMETRY I
 HOMEWORK 9

DUE: WEDNESDAY, NOVEMBER 19
(1) Consider the n-sphere $\mathbf{S}^{n}=\left\{\left(x^{1}, \ldots, x^{n+1}\right) \in \mathbb{R}^{n+1} \mid \sum_{j=1}^{n+1}\left(x^{j}\right)^{2}=1\right\}$ with the metric g to be the restriction of $\sum_{j=1}^{n+1}\left(\mathrm{~d} x^{j}\right)^{2}$. Let $p=(0, \ldots, 0,1)$, then $T_{p} \mathbf{S}^{2}$ can be identified with the hyperplane $\left\{\left(u^{1}, \ldots, u^{n+1}\right) \in \mathbb{R}^{n+1} \mid u^{n+1}=0\right\}$.
(a) For $\mathbf{u}=\left(u^{1}, \ldots, u^{n}\right) \in T_{p} \mathbf{S}^{n}$ with $|\mathbf{u}|^{2}=\sum_{j=1}^{n}\left(u^{j}\right)^{2}<\pi^{2}$, find out $\exp _{p} \mathbf{u}$.
(b) Calculate the metric $g_{i j}$ of the Gaussian coordinate centered at p, and check that

$$
\sum_{j=1}^{n}\left(g_{i j}(\mathbf{u})-\delta_{i j}\right) u^{j}=0 \quad \text { and } \quad\left|g_{i j}(\mathbf{u})-\delta_{i j}\right| \leq c|\mathbf{u}|^{2}
$$

(2) Consider the disk $B=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}<1\right\}$ with the Poincaré metric

$$
g=\frac{4}{\left(1-x^{2}-y^{2}\right)^{2}}\left((\mathrm{~d} x)^{2}+(\mathrm{d} y)^{2}\right)
$$

Let p be the origin, then $T_{p} B$ is naturally identified with the $x y$-plane.
(a) For $\mathbf{v}=\left(v^{1}, v^{2}\right) \in \mathbb{R}^{2}$, identify it with $\frac{1}{2}\left(v^{1} \frac{\partial}{\partial x}+v^{2} \frac{\partial}{\partial y}\right) \in T_{p} B$. Find out $\exp _{p} \mathbf{v}$. [Hint: In Homework 8, you almost find the geodesics. Also, note that $\left.g\right|_{p}=(2 \mathrm{~d} x)^{2}+(2 \mathrm{~d} y)^{2}$.]
(b) Calculate the metric $g_{i j}$ of the Gaussian coordinate centered at p, and check that

$$
\sum_{j=1}^{2}\left(g_{i j}(\mathbf{v})-\delta_{i j}\right) v^{j}=0 \quad \text { and } \quad\left|g_{i j}(\mathbf{v})-\delta_{i j}\right| \leq c|\mathbf{v}|^{2}
$$

on a small neighborhood of the origin.

