DIFFERENTIAL GEOMETRY I HOMEWORK 8

DUE: WEDNESDAY, NOVEMBER 12

Models for Hyperbolic Geometry

Hyperboloid model. Let \mathbb{R}^{3} be equipped with the following non-degenerate, symmetric bilinear form:

$$
\langle\langle x, y\rangle\rangle=x_{1} y_{1}+x_{2} y_{2}-x_{3} y_{3} .
$$

Another gadget we are going to use is the following symmetric $(0,2)$-tensor on \mathbb{R}^{3} :

$$
\left(\mathrm{d} x_{1}\right)^{2}+\left(\mathrm{d} x_{2}\right)^{2}-\left(\mathrm{d} x_{3}\right)^{2} \in \mathcal{C}^{\infty}\left(\mathbb{R}^{3} ; \operatorname{Sym}^{2} T^{*} \mathbb{R}^{3}\right) .
$$

Consider one-branch of the two-sheeted hyperboloid:

$$
H=\left\{x \in \mathbb{R}^{3} \mid\langle\langle x, x\rangle\rangle=-1 \text { and } x_{3}>0\right\} .
$$

Since the only critical (non-regular) value of $\langle\langle x, x\rangle\rangle$ is 0 . The set H is a submanifold of \mathbb{R}^{3}, and $T_{x} H=\left\{v \in \mathbb{R}^{3} \mid\langle\langle x, v\rangle\rangle=0\right\}$.

It is a straightforward computation to check that

$$
\begin{aligned}
\psi: \quad \mathbb{R}^{2} & \rightarrow \mathbb{R}^{3}=\mathbb{R}^{2} \times \mathbb{R}^{2} \\
u & \mapsto\left(u, \sqrt{1+u^{2}}\right)
\end{aligned}
$$

defines a diffeomorphism from \mathbb{R}^{2} to H.
(i) Let g be the restriction of \ddagger) on H. Show that g is a Riemannian metric on H by checking that $\psi^{*} g$ is positive-definite.
(ii) Calculate the Christoffel symbols for $\left(\mathbb{R}^{2}, \psi^{*} g\right)$. Then, write down its geodesic equation, and check that $u(t)=\sinh (t) \underline{v}$ is a geodesic for any $\underline{v} \in \mathbb{R}^{2}$ of unit length. Note that the initial point $u(0)=0$, and the initial velocity $u^{\prime}(0)=\underline{v}$.

It follows that $\psi(u(t))=(\sinh (t) \underline{v}, \cosh (t))$ is a geodesic on (H, g).
Isometry and geodesic for the hyperboloid model. Introduce the Lorentz group:

$$
\mathrm{O}(2,1)=\left\{\mathfrak{m} \in \operatorname{Gl}(3 ; \mathbb{R}) \mid \mathfrak{m}^{T} \mathfrak{L} \mathfrak{m}=\mathfrak{L}\right\}
$$

where

$$
\mathfrak{L}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

(iii) For any $\mathfrak{m} \in \mathrm{O}(2,1)$, regard it as a self-diffeomorphism of \mathbb{R}^{3}. Check that $\langle\langle\rangle$,$\rangle is \mathfrak{m}$-invariant, and the pull-back of $\ddagger \ddagger$ under \mathfrak{m} is still $(\ddagger$. [Hint: Indeed, these two statements are the same.]

It has the following consequence. Any $\mathfrak{m} \in \mathrm{O}(2,1)$ induces a self-diffeomorphism of the two-sheeted hyperboloid $\left\{x \in \mathbb{R}^{3} \mid\langle\langle x, x\rangle\rangle=-1\right\}$. Thus, $\mathfrak{m}(H)$ is either H itself, or another branch of the hyperboloid. If \mathfrak{m} preserves H, it is an isometry ${ }^{1}$ of (H, g). Clearly, an isometry maps a geodesic onto another geodesic.
(iv) For any $x \in H$ and $v \in T_{x} H$, show that the geodesic with initial position x and unit-normed initial velocity v is $\cosh (t) x+\sinh (t) v$. [Hint: We already finished the case when $x=(0,0,1)$. Assume that $x \neq(0,0,1)$. Write x as $(\sinh \rho \cos \theta, \sinh \rho \sin \theta, \cosh \rho)$ with $\rho>0$. Consider the matrix \mathfrak{m} with the first column to be $(\cosh \rho \cos \theta, \cosh \rho \sin \theta, \sinh \rho)$, the second column to be $(-\sin \theta, \cos \theta, 0)$, and the third column to be x. Those two vectors are obtained by normalizing $\frac{\partial}{\partial \rho}$ and $\frac{\partial}{\partial \theta}$ with respect to \ddagger. The linear map \mathfrak{m} sends $(0,0,1)$ to x.]
(v) Conclude that the geodesics of (H, g) are exactly given by the intersection of H with a two-plane (two-dimensional vector subspace of \mathbb{R}^{3}).

Poincaré model. Let φ be the pseudo-inversion with pole $q=(0,0,-1)$ of modulus -2 :

$$
\varphi(x)=q-\frac{2(x-q)}{\langle\langle x-q, x-q\rangle\rangle} .
$$

It obeys $\langle\langle\varphi(x)-q, x-q\rangle\rangle=-2$, which is analogous to the classical inversion relation.
(vi) Show that φ is a diffeomorphism from H onto the unit disk $B=\left\{s \in \mathbb{R}^{2}| | s \mid<1\right\}$ of the $x y$-plane, and write down the explicit formula for $\left(\varphi^{-1}\right)^{*} g$.
(vii) Describe geometrically the geodesics of $\left(B,\left(\varphi^{-1}\right)^{*} g\right)$. [Hint: It is easier to use Part (v).]

Beltrami-Klein model. There is another diffeomorphism from H to B. Consider the affine plane $P=\mathbb{R}^{2} \times\{1\} \subset \mathbb{R}^{3}$. For any $x \in H, \pi(x)$ is the intersection of P with the line passing through the origin and x.
(viii) Show that π is a diffeomorphism from H onto the unit disk B, and write down the explicit formula for $\left(\pi^{-1}\right)^{*} g$.
(ix) Describe geometrically the geodesics of $\left(B,\left(\pi^{-1}\right)^{*} g\right)$. [Hint: It is easier to use Part (v).]

Isometry group. All the isometries of a Riemannian manifold constitute a group, where the binary operation is the composition. This group is called the isometry group.
(x) bonus Explain the isometry group for the Poincaré model and the Beltrami-Klein model.

The hyperbolic geometry does not obey the parallel postulate (the fifth postulate in Euclid's Elements). The study of non-Euclidean geometry is motivated by understanding the parallel postulate. It eventually leads to the creation of Riemannian geometry.

[^0]
[^0]: ${ }^{1}$ An isometry of a Riemannian manifold is a self-diffeomorphism which pulls back the metric to itself.

