DIFFERENTIAL GEOMETRY I HOMEWORK 7

DUE: WEDNESDAY, NOVEMBER 5

(1) The Heisenberg group is diffeomorphic to \mathbb{R}^{3}, but the Lie group structure is different. It is not abelian.

$$
H=\left\{\left[\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]: x, y, z \in \mathbb{R}\right\}
$$

It is not hard to show that H is a Lie subgroup of $\operatorname{Gl}(3 ; \mathbb{R})$. Denote its tangent space at the identity by \mathfrak{h}. The space \mathfrak{h} can be identified with the space of 3×3 matrices whose lower-diagonal elements all vanish.
(a) Calculate $\exp : \mathfrak{h} \rightarrow H$, and show that it is a diffeomorphism. [Hint: You may use u, v, w as the coordinates for \mathfrak{h} to avoid confusion. The power series in this case turns out to have only finitely many terms. The inverse map of exponential can be solved explicitly.]
(b) Construct three linearly independent left-invariant 1-forms on H. [Hint: Any 1form on H can be expressed as $a_{1} \mathrm{~d} x+a_{2} \mathrm{~d} y+a_{3} \mathrm{~d} z$ for $a_{j} \in \mathcal{C}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$.]
(c) Construct three linearly independent right-invariant 1-forms on H.
(d) Use Part (b) and (c) to construct a bi-invarian $\|^{1}$ volume form on H.

Remark. With Part (b), it is fairly easy to construct a left-invariant Riemannian metric on H. Let σ^{1}, σ^{2} and σ^{3} be the answer to Part (b). Choose a positive-definite, symmetric 3×3 matrix $\left[b_{i j}\right]_{i, j=1}^{3}$. Then, $\sum_{i, j=1}^{3} b_{i j} \sigma^{i} \otimes \sigma^{j}$ defines a left-invariant Riemannian metric on H. Such a construction works for any Lie group.
(2) Consider

$$
G=\left\{\left[\begin{array}{ll}
x & y \\
0 & 1
\end{array}\right]: x>0 \text { and } y \in \mathbb{R}\right\}
$$

Its tangent space at the identity can be identified with

$$
\mathfrak{g}=\left\{\left[\begin{array}{cc}
u & v \\
0 & 0
\end{array}\right]: u, v \in \mathbb{R}\right\}
$$

A direct computation shows that

$$
\exp \left(\left[\begin{array}{ll}
u & v \\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{cc}
e^{u} & \frac{e^{u}-1}{u} v \\
0 & 1
\end{array}\right]
$$

[^0](a) Construct two linearly independent left-invariant 1-forms on G, and calculate their pull-back under the exponential map. [Hint: The function $1 / x$ is smooth on G.]
(b) Construct a left-invariant and a right-invariant volume form on G, and show that the only bi-invariant 2 -form on G is zero.

Remark. In general, a Lie group may not admit a bi-invariant volume form.
(3) Consider $\operatorname{Sl}(2 ; \mathbb{R})=\{\mathfrak{m} \in \mathrm{Gl}(2 ; \mathbb{R}) \mid \operatorname{det} \mathfrak{m}=1\}$. Denote the identity matrix by 1. Its tangent space at $\mathbf{1}$ can be identified with 2×2, traceless matrices. Denote it by

$$
\mathfrak{s l}(2 ; \mathbb{R})=\{\mathfrak{a} \in \mathbb{M}(2 ; \mathbb{R}) \mid \operatorname{tr}(\mathfrak{a})=0\}
$$

Consider the exponential map

$$
\begin{aligned}
\exp : \mathfrak{s l}(2 ; \mathbb{R}) & \rightarrow \mathrm{Sl}(2 ; \mathbb{R}) \\
\mathfrak{a} & \mapsto \mathbf{1}+\mathfrak{a}+\frac{1}{2} \mathfrak{a}^{2}+\cdots+\frac{1}{k!} \mathfrak{a}^{k}+\cdots
\end{aligned}
$$

By using $\# 1$ of Homework 2, it is not hard to show that the image does belong to $\mathrm{Sl}(2 ; \mathbb{R})$.
(a) Prove that for any $\mathfrak{a} \in \mathfrak{s l}(2 ; \mathbb{R})$, the eigenvalues of $\exp (\mathfrak{a})$ lie either in the unit circle, or in the positive real line. [Hint: Consider the Jordan form of \mathfrak{a}.]
It follows that $\mathbf{- 1} \in \operatorname{Sl}(2 ; \mathbb{R})$ does not belong to the image of the exponential map, and the exponential map is not surjective.
(b) For any $\mathfrak{a} \in \mathfrak{s l}(2 ; \mathbb{R})$, prove that

$$
\exp (\mathfrak{a})=(\cosh \lambda) \mathbf{1}+\frac{\sinh \lambda}{\lambda} \mathfrak{a}
$$

where $\lambda=(-\operatorname{det} \mathfrak{a})^{\frac{1}{2}}$ is one of the eigenvalues of \mathfrak{a}. When $\operatorname{det} \mathfrak{a}=0$, the above formula $\operatorname{reads} \exp (\mathfrak{a})=\mathbf{1}+\mathfrak{a}$. $\quad[$ Hint: Consider the Jordan form of \mathfrak{a}. Remember that the hyperbolic sine and cosine functions are nothing more than simple linear combinations of the exponential functions.]
For $\mathfrak{a}=\left[\begin{array}{cc}0 & t \\ -t & 0\end{array}\right] \in \mathfrak{s l}(2 ; \mathbb{R}), \exp (\mathfrak{a})=\left[\begin{array}{cc}\cos t & \sin t \\ -\sin t & \cos t\end{array}\right]$. Thus, the exponential map is not injective. The inverse function theorem says that there exists a neighborhood U of $\mathbf{0}$ such that the restriction of the exponential map on U is a diffeomorphism onto its image. In this case, we may take that U to be $\left\{\mathfrak{a} \in \mathfrak{s l}(2 ; \mathbb{R}) \mid(\operatorname{det} \mathfrak{a})^{2}<\pi^{2}\right\}$.
(4) Reading assignment: [T; §5.7].

[^0]: ${ }^{1}$ A differential form on a Lie group is called bi-invariant if it is both left-invariant and right-invariant.

