DIFFERENTIAL GEOMETRY I HOMEWORK 6

DUE: WEDNESDAY, OCTOBER 29

(1) Consider the following $(n-1)$-form on $\mathbb{R}^{n} \backslash\{\mathbf{0}\}$:

$$
\omega=\sum_{j=1}^{n} \frac{(-1)^{j+1} x^{j} \mathrm{~d} x^{1} \wedge \cdots \wedge \widehat{\mathrm{~d} x^{j}} \wedge \cdots \wedge \mathrm{~d} x^{n}}{\left(\left(x^{1}\right)^{2}+\cdots+\left(x^{n}\right)^{2}\right)^{\frac{n}{2}}}
$$

where $\widehat{\mathrm{d} x^{j}}$ means that $\mathrm{d} x^{j}$-term is not there.
(a) Check that ω is closed.
(b) Prove that ω is not exact. [Hint: Consider the integral of ω on \mathbf{S}^{n-1}. Note that $\left.\omega\right|_{\mathbf{S}^{n-1}}=\left.\left(|\mathbf{x}|^{n} \omega\right)\right|_{\mathbf{S}^{n-1}}$. You may invoke the Stokes theorem on the integration of the latter ($n-1$)-form over \mathbf{S}^{n-1}.]
(2) The main purpose of this exercise is to prove that $\mathrm{H}_{\mathrm{d}}^{1}\left(\mathbf{S}^{2}\right)$ is trivial. Namely, any closed 1 -form on \mathbf{S}^{2} must be exact.
(a) Show that any closed 1 -form on \mathbb{R}^{2} is exact. [Hint: Let σ be a closed 1-form on \mathbb{R}^{2}. For any $P \in \mathbb{R}^{2}$, integrate σ along a rectangular (directed) path from $\mathbf{0}$ to P. Does it depend on the choice of the path?]
(b) Show that any closed 1-form on \mathbf{S}^{2} is exact.
(3) Consider the two-torus $\mathbf{T}^{2}=\mathbf{S}^{1} \times \mathbf{S}^{1}$. The main purpose of this exercise is to show that $\mathrm{H}_{\mathrm{d}}^{1}\left(\mathbf{T}^{2}\right) \cong \mathbb{R}^{2}$. The following map is the quotient map from \mathbb{R}^{2} to $\mathbf{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$:

$$
\begin{array}{rlrr}
\pi: \quad \mathbb{R}^{2} & \rightarrow & \mathbf{T}^{2}=\mathbf{S}^{1} \times \mathbf{S}^{1} \\
(\alpha, \beta) & \mapsto & \left(e^{2 \pi i \alpha}, e^{2 \pi i \beta}\right)
\end{array} .
$$

There exist two trivializing sections for the cotangent bundle of \mathbf{T}^{2}, whose pull-back under π are $\mathrm{d} \alpha$ and $\mathrm{d} \beta$, respectively. They are usually denoted by $\mathrm{d} \alpha$ and $\mathrm{d} \beta$ on \mathbf{T}^{2}. It is an abuse of notation, but turns out to be quite convenient. Any 1-form on \mathbf{T}^{2} can be written as $g \mathrm{~d} \alpha+h \mathrm{~d} \beta$ for $g, h \in \mathcal{C}^{\infty}\left(\mathbf{T}^{2} ; \mathbb{R}\right)$. Note that the notation does not suggest that $\mathrm{d} \alpha$ and $\mathrm{d} \beta$ are exact on \mathbf{T}^{2}.
(a) For any $\beta \in \mathbb{R}$, consider

$$
\gamma_{\beta}: \begin{array}{rlr}
\mathbf{S}^{1} & \rightarrow \mathbf{T}^{2}=\mathbf{S}^{1} \times \mathbf{S}^{1} \\
e^{2 \pi i \alpha} & \mapsto & \left(e^{2 \pi \alpha}, e^{2 \pi i \beta}\right)
\end{array} .
$$

Let σ be a closed 1-form on \mathbf{T}^{2}. Prove that $\int_{\mathbf{S}^{1}} \gamma_{\beta}^{*} \sigma$ is independent of β, where \mathbf{S}^{1} is oriented counterclockwisely.
(b) Let σ be a closed 1-form on \mathbf{T}^{2}. Prove that $\sigma-\left(\int_{\mathbf{S}^{1}} \gamma_{\beta}^{*} \sigma\right) \mathrm{d} \alpha-\left(\int_{\mathbf{S}^{1}} \gamma_{\alpha}^{*} \sigma\right) \mathrm{d} \beta$ is exact, where γ_{α} is defined similarly. [Hint: In any event, $\pi^{*} \sigma$ is a closed 1-form on \mathbb{R}^{2}, and is exact due to Part (a) of $\# 2$. However, σ is exact only when that function on \mathbb{R}^{2} can taken to be 1-periodic in both α and β variables.]
The above argument shows that $\operatorname{dim} \mathrm{H}_{\mathrm{d}}^{1}\left(\mathbf{T}^{2}\right) \leq 2$. A similar argument as that in $\# 2$ of Homework 4 shows that any linear combination of $\mathrm{d} \alpha$ and $\mathrm{d} \beta$ (with rational coefficients) cannot be exact. It follows that $\mathrm{H}_{\mathrm{d}}^{1}\left(\mathbf{T}^{2}\right) \cong \mathbb{R}^{2}$.

Since the de Rham cohomology is invariant under diffeomorphism, it shows that \mathbf{S}^{2} is not diffeomorphism to \mathbf{T}^{2}.
(4) Construct three 2×2 matrices with real entries, A, B and C such that $\operatorname{tr}(A B C) \neq \operatorname{tr}(B A C)$.
(5) [Suggested reading, not a writing homework] Let M be a compact manifold for simplicity, and $\pi: E \rightarrow M$ be a rank k vector bundle. Then

- E can be realized as a subbundle of the trivial bundle $M \times \mathbb{R}^{\ell}$ for any sufficiently large $\ell ;$
- for any sufficiently large ℓ, there exists a map $\psi: M \rightarrow \mathbf{G r}(\ell ; k)$ such that the pull-back of the tautological bundle is E.
The first item is in the last paragraph of $[\mathrm{T} ; \S 4.1]$, and the second item is in $[\mathrm{T} ; \S 5.2]$. The second item means that the information of E can be encoded in a map from M to a Grassmannian manifold.
(6) [Appendix] Let \mathfrak{a} and \mathfrak{b} be two $n \times n$ matrices. What follows is another argument for

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} e^{\mathfrak{a}+t \mathfrak{b}}=\int_{0}^{1} e^{(1-s) \mathfrak{a}} \mathfrak{b} e^{s \mathfrak{a}} \mathrm{~d} s
$$

To start, note that

$$
\frac{\mathrm{d}}{\mathrm{~d} s} e^{s \mathfrak{c}}=e^{s \mathfrak{c}} \mathfrak{c}=\mathfrak{c} e^{s \mathfrak{c}}
$$

for any $\mathfrak{c} \in \mathbb{M}(n ; \mathbb{R})$. Now,

$$
\begin{aligned}
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0}\left(e^{-\mathfrak{a}} e^{\mathfrak{a}+t \mathfrak{b}}\right)= & \int_{0}^{1} \frac{\mathrm{~d}}{\mathrm{~d} s}\left(\left.\frac{\mathrm{~d}}{\mathrm{~d} t}\right|_{t=0} e^{-s \mathfrak{a}} e^{s(\mathfrak{a}+t \mathfrak{b})}\right) \mathrm{d} s \\
= & \left.\int_{0}^{1} \frac{\mathrm{~d}}{\mathrm{~d} t}\right|_{t=0} \frac{\mathrm{~d}}{\mathrm{~d} s}\left(e^{-s \mathfrak{a}} e^{s(\mathfrak{a}+t \mathfrak{b})}\right) \mathrm{d} s \\
= & \left.\int_{0}^{1} \frac{\mathrm{~d}}{\mathrm{~d} t}\right|_{t=0}\left(-e^{-s \mathfrak{a}} \mathfrak{a} e^{s(\mathfrak{a}+t \mathfrak{b})}+e^{-s \mathfrak{a}}(\mathfrak{a}+t \mathfrak{b}) e^{s(\mathfrak{a}+t \mathfrak{b})}\right) \mathrm{d} s \\
= & \int_{0}^{1}\left(-e^{-s \mathfrak{a}} \mathfrak{a}\left(\left.\frac{\mathrm{~d}}{\mathrm{~d} t}\right|_{t=0} e^{s(\mathfrak{a}+t \mathfrak{b})}\right)\right. \\
& \left.\quad+e^{-s \mathfrak{a}} \mathfrak{b} e^{s \mathfrak{a}}+e^{-s \mathfrak{a}} \mathfrak{a}\left(\left.\frac{\mathrm{~d}}{\mathrm{~d} t}\right|_{t=0} e^{s(\mathfrak{a}+t \mathfrak{b})}\right)\right) \mathrm{d} s
\end{aligned}
$$

which finishes the proof for (\dagger).

