DIFFERENTIAL GEOMETRY I HOMEWORK 6

DUE: WEDNESDAY, OCTOBER 29

(1) Consider the following (n-1)-form on $\mathbb{R}^n \setminus \{\mathbf{0}\}$:

$$\omega = \sum_{j=1}^{n} \frac{(-1)^{j+1} x^j dx^1 \wedge \dots \wedge \widehat{dx^j} \wedge \dots \wedge dx^n}{\left((x^1)^2 + \dots + (x^n)^2 \right)^{\frac{n}{2}}}$$

where $\widehat{\mathrm{d}x^j}$ means that $\mathrm{d}x^j$ -term is not there.

- (a) Check that ω is closed.
- (b) Prove that ω is not exact. [Hint: Consider the integral of ω on \mathbf{S}^{n-1} . Note that $\omega|_{\mathbf{S}^{n-1}} = (|\mathbf{x}|^n \omega)|_{\mathbf{S}^{n-1}}$. You may invoke the Stokes theorem on the integration of the latter (n-1)-form over \mathbf{S}^{n-1} .]
- (2) The main purpose of this exercise is to prove that $H^1_d(\mathbf{S}^2)$ is trivial. Namely, any closed 1-form on \mathbf{S}^2 must be exact.
 - (a) Show that any closed 1-form on \mathbb{R}^2 is exact. [Hint: Let σ be a closed 1-form on \mathbb{R}^2 . For any $P \in \mathbb{R}^2$, integrate σ along a rectangular (directed) path from $\mathbf{0}$ to P. Does it depend on the choice of the path?]
 - (b) Show that any closed 1-form on S^2 is exact.
- (3) Consider the two-torus $\mathbf{T}^2 = \mathbf{S}^1 \times \mathbf{S}^1$. The main purpose of this exercise is to show that $H^1_d(\mathbf{T}^2) \cong \mathbb{R}^2$. The following map is the quotient map from \mathbb{R}^2 to $\mathbf{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$:

$$\pi: \mathbb{R}^2 \to \mathbf{T}^2 = \mathbf{S}^1 \times \mathbf{S}^1$$

$$(\alpha, \beta) \mapsto (e^{2\pi i \alpha}, e^{2\pi i \beta}).$$

There exist two trivializing sections for the cotangent bundle of \mathbf{T}^2 , whose pull-back under π are $d\alpha$ and $d\beta$, respectively. They are usually denoted by $d\alpha$ and $d\beta$ on \mathbf{T}^2 . It is an abuse of notation, but turns out to be quite convenient. Any 1-form on \mathbf{T}^2 can be written as $g d\alpha + h d\beta$ for $g, h \in \mathcal{C}^{\infty}(\mathbf{T}^2; \mathbb{R})$. Note that the notation does *not* suggest that $d\alpha$ and $d\beta$ are exact on \mathbf{T}^2 .

(a) For any $\beta \in \mathbb{R}$, consider

$$\gamma_{\beta}: \mathbf{S}^{1} \rightarrow \mathbf{T}^{2} = \mathbf{S}^{1} \times \mathbf{S}^{1}$$

$$e^{2\pi i \alpha} \mapsto (e^{2\pi \alpha}, e^{2\pi i \beta})$$

Let σ be a closed 1-form on \mathbf{T}^2 . Prove that $\int_{\mathbf{S}^1} \gamma_{\beta}^* \sigma$ is independent of β , where \mathbf{S}^1 is oriented counterclockwisely.

(b) Let σ be a closed 1-form on \mathbf{T}^2 . Prove that $\sigma - (\int_{\mathbf{S}^1} \gamma_{\beta}^* \sigma) d\alpha - (\int_{\mathbf{S}^1} \gamma_{\alpha}^* \sigma) d\beta$ is exact, where γ_{α} is defined similarly. [*Hint*: In any event, $\pi^* \sigma$ is a closed 1-form on \mathbb{R}^2 , and is exact due to Part (a) of #2. However, σ is exact only when that function on \mathbb{R}^2 can taken to be 1-periodic in both α and β variables.]

The above argument shows that $\dim H^1_d(\mathbf{T}^2) \leq 2$. A similar argument as that in #2 of Homework 4 shows that any linear combination of $d\alpha$ and $d\beta$ (with rational coefficients) cannot be exact. It follows that $H^1_d(\mathbf{T}^2) \cong \mathbb{R}^2$.

Since the de Rham cohomology is invariant under diffeomorphism, it shows that S^2 is not diffeomorphism to T^2 .

- (4) Construct three 2×2 matrices with real entries, A, B and C such that $tr(ABC) \neq tr(BAC)$.
- (5) [Suggested reading, not a writing homework] Let M be a compact manifold for simplicity, and $\pi: E \to M$ be a rank k vector bundle. Then
 - E can be realized as a subbundle of the trivial bundle $M \times \mathbb{R}^{\ell}$ for any sufficiently large ℓ ;
 - for any sufficiently large ℓ , there exists a map $\psi: M \to \mathbf{Gr}(\ell; k)$ such that the pull-back of the tautological bundle is E.

The first item is in the last paragraph of [T; $\S4.1$], and the second item is in [T; $\S5.2$]. The second item means that the information of E can be encoded in a map from M to a Grassmannian manifold.

(6) [Appendix] Let \mathfrak{a} and \mathfrak{b} be two $n \times n$ matrices. What follows is another argument for

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0}e^{\mathfrak{a}+t\mathfrak{b}} = \int_0^1 e^{(1-s)\mathfrak{a}}\,\mathfrak{b}\,e^{s\mathfrak{a}}\,\mathrm{d}s\;. \tag{\dagger}$$

To start, note that

$$\frac{\mathrm{d}}{\mathrm{d}s}e^{s\mathfrak{c}} = e^{s\mathfrak{c}}\,\mathfrak{c} = \mathfrak{c}\,e^{s\mathfrak{c}}$$

for any $\mathfrak{c} \in \mathbb{M}(n; \mathbb{R})$. Now,

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t}\big|_{t=0}(e^{-\mathfrak{a}}e^{\mathfrak{a}+t\mathfrak{b}}) &= \int_0^1 \frac{\mathrm{d}}{\mathrm{d}s} \big(\frac{\mathrm{d}}{\mathrm{d}t}\big|_{t=0}e^{-s\mathfrak{a}}e^{s(\mathfrak{a}+t\mathfrak{b})}\big)\,\mathrm{d}s \\ &= \int_0^1 \frac{\mathrm{d}}{\mathrm{d}t}\big|_{t=0} \frac{\mathrm{d}}{\mathrm{d}s} \big(e^{-s\mathfrak{a}}e^{s(\mathfrak{a}+t\mathfrak{b})}\big)\,\mathrm{d}s \\ &= \int_0^1 \frac{\mathrm{d}}{\mathrm{d}t}\big|_{t=0} \big(-e^{-s\mathfrak{a}}\,\mathfrak{a}\,e^{s(\mathfrak{a}+t\mathfrak{b})} + e^{-s\mathfrak{a}}\,(\mathfrak{a}+t\mathfrak{b})e^{s(\mathfrak{a}+t\mathfrak{b})}\big)\,\mathrm{d}s \\ &= \int_0^1 \big(-e^{-s\mathfrak{a}}\,\mathfrak{a}\,\big(\frac{\mathrm{d}}{\mathrm{d}t}\big|_{t=0}e^{s(\mathfrak{a}+t\mathfrak{b})}\big) \\ &+ e^{-s\mathfrak{a}}\,\mathfrak{b}\,e^{s\mathfrak{a}} + e^{-s\mathfrak{a}}\,\mathfrak{a}\,\big(\frac{\mathrm{d}}{\mathrm{d}t}\big|_{t=0}e^{s(\mathfrak{a}+t\mathfrak{b})}\big)\big)\,\mathrm{d}s \end{split}$$

which finishes the proof for (†).